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This report covers the period April 1 1991 to

December 31 1991. Effort has continued through this period

to refine and expand the SIRIUS/ABACUS program package for

CASSCFand RASSCFsecond derivatives. One of the other

authors of the package, Trygve Helgaker, and myself have

devised a new approach to computing the Gaussian integral

derivatives that require much of the time in gradient and

Hessian calculations. This work has been written up and

accepted for publication (copies attached).

Several different studies have been undertaken in

the area of application calculations. These include a study

of proton transfer in the HF trimer, which provides an analog

of rearrangement reactions, and the extension of our previous

work on Be and Mg clusters to Ca clusters. In addition, a

very accurate investigation of the lowest-lying potential

curves of the 02 molecule was completed. These curves are

essential for evaluating different models of the terrestrial

atmosphere nightglow. All these studies have been written up

and accepted for publication (copies attached).

We have recently repeated some of our earlier

studies of the Ne atom hyperpolarizability, stimulated partly

by concern about very small uncertainties in the perturbed

energies because of SCF convergence difficulties, and partly

by the publication of a RASSCF investigation that predicted a

very different hyperpolarizability. By calibrating our

earlier calculations against full CCSDT results we can be

confident that our earlier result (corrected for the



convergence problems) should be much more reliable than the

RASSCFresult. This work has been written up and accepted

for publication (copies attached).

Most effort this year has been devoted to a large-

scale investigation of stationary points on the C4H4 surface,

and the thermochemistry and mechanisms of acetylene/acetylene

reaction. Since acetylene is the last stable hydrocarbon

species produced in the combustion of hydrocarbon fuels, it

has been speculated that reaction between two C2H2 species

could be an important component of the overall combustion

mechanism. Direct reaction of acetylene with itself to

produce any C4H4 products is likely to involve very high

barriers; on the other hand, the very reactive vinylidene

isomer of C2H2 lies about 45 kcal/mol above acetylene. If

significant quantities of vinylidene were formed these could

react with acetylene to form a number of different C4H4

isomers. In fact, the existence of numerous minima on the

C4H4 surface, including some forms well-described only at the

MCSCF level and thus not previously characterized, has

seriously complicated the investigation. However, it seems

likely that all relevant minima have been found, and some

effort has been invested in locating saddle points on various

pathways (if indeed there are barriers). So far, it seems

likely that vinylidene insertion into the acetylene CH bond

will occur without a barrier, but there may be a barrier to

CC bond insertion. This work is continuing.
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Abstract

Ab initio results are presented for the low-lying bound states of 02 that dis-

sociate to ground-state atoms. Spectroscopic constants and dissociation energies

are reported for the X3_-_, alAg, and ba_3+, c1_, A'3A,,, A3_ +, 3II_, s_, sii_,

andSIIg states. For the six lowest states, which have been experimentally charac-

terized, we obtain accurate results at the multireference configuration interaction

plus Davidson correction level. For example, we compute a D_ value for the X3_

state to be only 1.5 kcal/mole less than the experimental result after we have cor-

rected for basis set superposition error. The 5IIg state is estimated to have a De

of 0.16-4-0.03 eV, which suggests that the importance of this state in the nightglow

should probably be reconsidered.

I. Introduction

The six strongly bound states of 02 that originate from ground-state atoms

have been well characterized experimentally. More weakly bound states, such as

sIIg, have not been observed and will be difficult to characterize experimentally. Yet

a knowledge of the potential energy curves of these states is important for modelling

a number of phenomena. For example, the potential energy curves for these states

are required for the calculation of transport properties and for modelling the energy

flow in the Earth's atmosphere.

The terrestrial atmosphere nightglow is known to have two components: the

t Mailing address: NASA Ames Research Center, Moffett Field, CA 94035
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first is due to emission from the 02 alAg state, which is formed by the daytime

photodissociation of 03, and the second is due to emission from a series of excited

states, which are formed by the recombination of O atoms. This second process

is very complex and is not completely understood. The first step involves the

formation of excited O2 molecules,

0(3P) + O(aP) + M -_ O_ + M. (1)

These excited molecules can radiate, react, relax collisionally, or dissociate. There

seems to be general agreement that emission from several states, most notably b1 _+,

is more intense than can be explained solely by a direct population mechanism and

that a precursor must be involved. Both collision

O_ + M ---, 0_* + M (2)

and reaction

O; + O -_ O;* + O* (3)

are known to be important energy transfer mechanisms for 02. For example, the

reaction mechanism of eq. (3) is involved in the formation of O(1S), which is re-

sponsible for the nightglow green line.

Wraight [x] and Smith [x] calculated the atomic association rate (i.e., the rate

of eq. (1)) into each of the bound states of 02 and suggested that at 200 K 70%

of all associations took place into the sIIg state. The small De of the 5IIa state

leads to an increase in the dissociation rate state at higher temperatures, which

results in a rapid fall off in O atom association rate at higher temperatures; their

computed results were in good agreement with the experiments of Campbell and

Gary. Hence Wraight suggested that the sIIg state might play a very important role

as a precursor in the formation of 02 bl_ + and O(1S) in the Earth's atmosphere.

To a large degree these conclusions were based on the sIIg potential energy curve

calculated by Saxon and Liu, which has a Dc of 0.22 eV. Unfortunately, the first-

order configuration-interaction (FOCI) method used by Saxon and Liu yields only

qualitatively reliable binding energies, while the calculated association rates are

quite sensitive to the De since the sIIg lifetime must be sufficiently long that it can

be quenched to a more tightly bound state.
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Using a smaller estimate for the De, Bates concluded that 5Hg was not an

important precursor for the formation of the more strongly bound states or in the

production of O(1S). However, Bates suggested that it might play an important

role in the formation of 03 in the lower atmosphere by the reaction

O_ + O_ --+ 03 + O. (4)

As these uncertainties in understanding the upper atmosphere are derived in

part from the uncertainty in the dissociation energy of the 5Hg state, we have

undertaken a study to compute this quantity very accurately. In addition, there is

little information about the other weakly bound states of 02, such as s_, which

has been suggested as the state responsible for the perturbations in the A 3 _+ state.

In this work we report on calculations on a number of the weakly bound valence

states of 02. The calculation of binding energies, in particular, for such systems

is a challenging problem, and we have attempted to estimate the reliability of our

calculations by examining the convergence of our results for the six strongly bound

states characterized accurately by experiment. The computational requirements

for obtaining reliable spectroscopic constants for these states should provide useful

information on the requirements for describing the hitherto uobserved states. We

demonstrate that a multireference configuration-interaction (MRCI) treatment with

a Davidson correction (denoted +Q) in an extended basis set yields reliable results.

II. Method

Most of the one-particle basis sets employed in this study are constructed

using general contractions based on atomic natural orbitals (ANO) [1]. The first

primitive set employed is that used in earlier work. The basis is derived from

the (13s 8p) primitive set of van Duijneveldt supplemented with a (6d 4] 2g lh)

even-tempered set of polarization functions. The polarization functions are of the

form a = 2.5'_a0 with n = 0...k and s0 =0.13, 0.39, 1.24 and 2.61 for the

d, f, g, and h functions, respectively. The geometric mean of the d exponents is

derived from the optimum d exponent of Ahlrichs and Taylor. The primitive set

was contracted to [6s 5p 4d 3f 2g 1hi based upon the natural orbitals obtained

from atomic single and double excitation CI calculations correlating both the 2s



and 2p electrons,and employing an occupation number selectioncriterion of 10-5.

Smaller sets, such as the [5s 4p 3d 2f lg] set, are obtained by deleting the shell

of orbitals with the smallest occupation number. A secondcontracted set was

derived by supplementingthe contracted set with a diffuse s (a = 0.076666) and p

(a = 0.051556) function and uncontracting the outermost d function giving a set

designated [5s 4p 3 + ld 2f lg]+(sp). Supplementing the basis with the diffuse

functions improves the description of the oxygen atomic polarizability, an accurate

description of which is necessary to calculate reliable interaction energies for weakly

bound systems.

To investigate the convergence with respect to the primitive basis set, we em-

ployed an ANO set derived from a larger (18s 13p) primitive set. This set is quadru-

ple zeta in the 2s space and yields an atomic SCF energy only 3 #EH above the

numerical Hartree-Fock result. This primitive set is supplemented with a (6d 5f 4g)

even-tempered set of polarization functions; a0 = 0.13, 0.25, and 0.42 for the d, f,

and g functions. The expanded f and g polarization sets are employed since work

on Ne atom indicated that the smaller 4f 2g sets might not be saturated. The

primitive set was contracted to [5s 5p 3d 2f lg] based upon the natural orbitals

from atomic calculations: natural orbitals with occupation numbers greater than

10 -s were selected. In addition, we employed the [9s 7p 4d 2f] segmented basis

set from ref x. This set is a [7s 5p] contraction of the (13s 8p) set of Partridge

supplemented with two diffuse s, two diffuse p, and a (4d 2f) polarization set. The

basis set was derived for a study of the high-spin states of NO and at the coupled-

pair functional (CPF) level gives an O atom polarizability of 5.14 a_, or 95% of the

recommended value. Only the pure spherical harmonic components of the d, f, g,

and h functions are employed.

The orbitals were optimized using the complete-active space self-consistent-

field (CASSCF) approach. While the calculations are performed in D2h symmetry,

full Do,,h symmetry is imposed on the orbitals. In most cases the 2p orbital and

electrons are active. For the a lag and b1 _]g+ states, a state-averaged (SA) CASSCF

approach is employed as they appear in the same D2h irreducible representation.

MRCI calculations correlating both the 2s and 2p electrons are performed: these

include all single and double excitations from all configurations in CASSCF wave
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function. The effectof higher excitations is estimated using a multireference analog

of the Davidson correction, denoted +Q, and the size-extensiveaveragedcoupled-

pair functional (ACPF) method. Basis set superposition errors (BSSE) are esti-

mated using the counterpoisemethod. All calculations were performed with the

MOLECULE-SWEDEN program system.

III. Results and Discussion

A. Strongly bound states

The calculated spectroscopicconstants for the X3_]_ -, alAg and bl_ + states

in the different basis sets are compared with the experimental results in Table I.

The rc and wc constants are derived from a fit in 1/r to the theoretical results

on a 0.1 a0 grid. The D_ values are computed using a supermolecule to mini-

mize size-consistency errors. Overall the results are in rather good agreement with

experiment. For the ground state expanding the basis set from [4s 3p 2d lf] to

[5s 4p 3d 2f lg] results in little change in re and eve, but De is increased by almost

0.2 eV. Expansion to [6s 5p 4d 3f 2g lh] has a much smaller effect, increasing D_

by about 0.05 eV. These results suggest that the calculated spectroscopic constants

in our biggest basis set are near the basis set limit. Extending the [5s 4p 3d 2f lg]

basis set with diffuse functions (and uncontracting the outermost d primitive) in-

creases the calculated De by about 0.025 eV, which is considerably more than the

0.009 eV obtained by substantially expanding the primitive basis set. Based on

these results we use the [5s 4p 3 + ld 2f lg] + (sp) basis as our standard basis

set in the remainder of this work. In this set the r_ and w_ values are in exceUent

agreement with experiment. At the MRCI level the calculated D_ values are about

0.15 eV less than the experimental results, whereas including the Davidson correc-

tion for higher excitations gives D_ values about 0.03 eV less than the experiment.

This differs from previous work employing a [Ss 4p 3d 2f lg] ANO basis set, which

suggested that the MRCI+Q level of treatment in these basis sets overestimated

De. The discrepancy occurs since the highest % and a,, orbitals were deleted in the

earlier work. At long range this corresponds to deleting a combination of the fourth

and fifth s ANOs, while near r_ the orbitals are a combination of all possible _r

components. Deleting these orbitals artificially raised the atomic asymptote (when



twelveelectronsarecorrelated) resulting in a 0.08eV overestimationof D,. In com-

parisons with double zeta plus polarization basis eight-electron full CI calculations,

the MRCI+Q treatment was shown to overestimate D, by about as much as MRCI

underestimates it. However, when 2s correlation is included it is unlikely that the

MRCI+Q treatment will significantly overestimate D, and we consider the results

at this level as the most reliable. In the ANO basis that includes h functions the

MRCI+Q D, value is slightly larger than experiment, but the difference is of the

same order as the superposition error, as discussed below. The reliability of the

Davidson correction is corroborated by the very similar results that are obtained

at the ACPF leveh Indeed, the ACPF results would suggest that the Davidson

correction slightly underestimates the effect of higher excitations.

Compared with the X 3 _- MRCI results with eight electrons correlated of Ref.

x, the effect of 2s correlation is to reduce D, by about 0.1 eV. This is considerably

larger than the 0.04 eV reported earlier; as noted above the error in the older

twelve-electrons correlated results arose from truncating the virtual orbital space.

However, even this larger value is substantially less than the 0.3 eV reduction for

N2. The reduction in D, in that case has been attributed to single excitations in

the N atom from 2s to 3d, with a concomitant spin and symmetry recoupling of

the 2p electrons. In N2 this effect disappears at v,, because all the 2p electrons are

coupled to a singlet to form the triple bond. The same atomic correlation effect

arises in the O atom, but in the 02 ground state part of the effect persists even

at r_, because the 2p electrons are not completely recoupled in forming the bond.

Hence the reduction in D, from 2s correlation will be less in 02 than in N2.

The basis set superposition errors, BSSE, for the different basis sets were esti-

mated using the counterpoise method. At the MRCI+Q level the BSSE (per atom)

at r=2.3 a0 is 0.022 eV for the [5s 4p 3d 2f 19] and [5s 4p 3 + ld 2f lg]+(sp)

basis set and 0.019 eV for the [5s 5p 3d 2.f 19] basis set. Most of the reduction in

the BSSE is due to the improvement of the primitive polarization basis; expanding

the s and p primitive spaces reduced the BSSE very slightly. Thus, corrected for

BSSE the calculated De of the X3_ - state is 0.083 eV (1.45 kcal/mole) smaller

than the experimental De. We estimate that about half this error is due to basis

set deficiencies, based on our experience with N2. Core (ls) correlation is likely to
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contribute on the order of 0.7 kcal/mole.

In Table II, we compare the spectroscopic constants at the MRCI+Q level in

the [5s 4p 3 + ld 2f lg]+(sp) basis set for the six bound states, dissociating to

ground state atoms, that have been experimentally characterized. The calculated

results are in excellent agreement for all of the states. Except for the alAg and

b1 _+ states the calculated De are all within 0.025 eV of the experimental results.

For the alAg and bl_] + states the error is 0.053 and 0.041 eV, respectively. We

have investigated the possibility that the use of SA-CASSCF orbitals is responsible

for this, but the error from this source is only 0.01 eV. Overall, our results indicate

that the computational procedure and basis set employed gives a good description

of all of the low-lying states. In fact, the calculated potentials for the c1_, A'3A,,,

and 3 +A G,_ states, tabulated in Table III and plotted in Fig. 1, agree well with the

RKR potentials, indicating that we are obtaining a good description for all r values.

B. Weakly bound states

The computational requirements necessary to obtain an accurate description

for weakly bound systems are severe, because the errors associated with the one- and

n-particle space truncation can be of the same order of magnitude as the well depth.

It is important that the computational procedure be able to describe the atomic

polarizabilities well and to minimize the BSSE. The ANO basis sets employed in

this work were contracted based upon a correlated treatment of the O(3P) state.

Thus, it is expected that, in some sense, these basis sets minimize the BSSE. In

addition, by uncontracting or supplementing with diffuse functions, the basis sets

permit an accurate description of the atomic properties.

For the weakly bound states of 02 dissociating to ground state O(3P) atoms,

the long range form of the potential is of the form

Cs C6 Cs
-yLn(r) = 7 + 7 + 7 +""

where the coefficient Cs arises from the quadrupole--quadrupole interactions, C8 is

the dispersion coefficient arising from the induced dipole-induced dipole interaction,

and Cs describes both dispersion and induction. We note parenthetically that the

free O atom does not have a quadupole moment, of course: it is only when the



atoms are perturbed, such as by another atom, that the degeneracy is lifted and it

is meaningful to speak of the quadrupole moments of a specific configuration. In

recent work on the high-spin states of NO we examined whether it is important

to constrain the O atom at long range to be spherical, i.e., to ensure that the all

of the states dissociating to ground state atoms have the same asymptotic energy.

We found that these constraints were not necessary for treatments that included

correlation. In addition to substantially increasing the length of the CI expansion,

the constraints reduced the relibility of the Davidson correction in the vicinity of

the minimum. Thus the constraints resulted in larger calculations that did not

improve the description of the long-range interaction, and degraded the description

of the short-range interaction. We do not require the O atoms to be spherical at

long range here, but use a supermolecule to define the asymptotic energy for each

state.

C5 is positive for the lIIg, 3II,, and 5IIg states. Hence at long range this is the

dominant term and these states are noticably more bound than the other states of

O2--see Figs. 1 and 2. In fact, for r values longer than about 5 ao, the 5IIg state

is the lowest-lying state of 02. This, coupled with the high degeneracy of the state,

led to the speculation concerning the importance of this state as a precursor for the

formation of the b1E+ state and 0( 1S) states. As discussed by Wright and in detail

by Bates, the importance of this state as an intermediate is strongly dependent upon

its De value. Using the [5s 4p 3 + ld 2f lg]+(sp) basis set employed for the other

states of O2, we obtain a De of 0.131 eV at the MRCI+Q level. This is significantly

less than the 0.22 eV obtained at the first-order CI (FOCI) level. Because of the

possible significance of this state in explaining the details of a number of processes,

it is important to calibrate the accuracy of our calculations.

The results of our calibration study for the sIIg state are given in Table IV.

First, we note that the inclusion of 2s correlation substantially deepens the well

and decreases re. The difference with the effect on the ground state occurs be-

cause the atomic correlation terms involving 2s to 3d excitation with a recoupling

of the 2p electrons are still present at re. In fact the 2p recoupling allows some

additional bonding, thus 2s correlation increases the bonding energy for the 5IIg

state. Second, while the magnitude of the Davidson correction is similar to that for



the experimentally characterizedstates, the relative magnitude of the correction is

substantial--it more than doubles the well depth. While corrections of this type

and of a similar magnitude have been shown to be accurate for other weakly bound

systems, it is important to calibrate the correction for this state, as full CI stud-

ies have demonstrated that the Davidson correction can overestimate the effect of

higher excitations. This was done by performing expanded reference calculations at

the eight-electron level using the [4s 3p 2d 1]] basis set. A second p shell was added

to the CASSCF active space, CASSCF(2p,2p'), and then an MRCI was performed

with a reference list consisting of all CSFs that could be formed by distributing

the eight electrons in all ways among the 3tra, 4_rg, 3a,,, 17r,,, 27r= and lrrg orbitals.

That is, the antibonding orbitals of the second p shell are not included in con-

structing the reference space. The MRCI based on this expanded reference space

is considerably (0.021 eV) deeper than the smaller MRCI, but the MRCI+Q result

is only 0.002 eV shallower than the previous MRCI+Q result. In addition, using

the smaller active space and the [5s 4p 3 + ld 2f lg]+(sp) basis set, the ACPF and

MRCI+Q results are again nearly the same--the ACPF De is 0.003 eV smaller.

These results suggest that even at the eight-electron level the MRCI+Q results are

reliable for the 5Hg state. Since the importance of higher excitations will increase

when 2s correlation is included, it is likely that the +Q correction is actually an

underestimate at the twelve-electron level. This is supported by the ACPF results,

which yield a De 0.021 eV larger than the MRCI+Q result. If the 2s orbitals and

electrons are included in the active space, CASSCF(2s,2p), and this CASSCF used

as the reference space, then Deincreases by 0.011 and 0.015 eV at the MRCI+Q

and ACPF levels, respectively. However, based on accurate calculations on N2, we

believe that the CASSCF(2s,2p) reference MRCI+Q and ACPF calculations may

overestimate the effect of higher excitations somewhat. Nevertheless, we can use

these results to obtain an error estimate for the n-particle treatment by assuming

that the CASSCF(2p)/MRCI+Q is a lower bound and the CASSCF(2s,2p)/ACPF

is an upper bound. Correcting for BSSE we obtain a De of 0.139 q- 0.018. Basis set

improvements will unquestionably increase the calculated De. For the X3_ - state,

by comparing our best computed result to experiment we observe that the basis

set incompleteness is about twice the BSSE, so it could be argues that rather than
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subtracting the BSSE we should add it to our computed D,, to account for basis

set incompleteness. Since this procedure is far from rigorous we have increased our

uncertainty estimate by 0.01 eV to account for the uncertainty in our one-particle

extrapolation. This leads to our best estimate of 0.16-4-0.03 eV for the D_ of the 5IIg

state. This value is slightly larger than our preliminary estimate, quoted by Bates,

of 0.14-4-0.03 eV. While our estimate is smaller than the FOCI result employed by

Wraight, it is large enough that it might be necessary to reconsider the importance

of the sIIg state as a precursor.

In Table IV we compare our computed spectroscopic constants with the FOCI

results of Saxon and Liu. Our calculated re is 0.2 a0 longer and we is much smaller

than the FOCI results--see Fig. 3. The difference is a consequence of the FOCI

procedure, not the one-particle basis set or method of optimizing the molecular or-

bitals, as we obtain similar FOCI results using our basis sets and CASSCF orbitals.

The FOCI approach substantially overestimates the interaction energy in the region

of the potential well: the curve is not even qualitatively correct. In fact, the FOCI

approach overestimates the interaction of many of the weakly bound states in this

region. For NO + we also found states for which the FOCI binding energies were

substantial overestimates.

The spectroscopic constants for the other weakly bound systems are summa-

rized in Table V. The calculated spectroscopic constants for the 5_3_ and 5II,, states

are in surprisingly good agreement with the FOCI results. However, this agreement

must be fortuitous, because all of the binding in these van der Waals bound states

arises from the dispersion interaction and the FOCI does not include the simul-

tanous single excitations required to describe it. Based on previous work on the

high spin states of N2 and NO, we estimate that our calculated D_ values are accu-

rate to within 20%, with the true potential being deeper than the calculated result.

Because of the positive Cs term, the 3H_, and lIIg states have slightly larger D_

and shorter re values than the weakly bound states, where C6 is the first non-zero

term in the multipole expansion.

Borrell et al. found perturbations in the N= 9, 11, and 13 rotational lev-

els of v=ll for the A 3_+ state. These rotational levels lie between 61-4-15 and

15-4-15 cm -1 below the dissociation limit. They suggested, based on the poten-
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tials of Saxon and Liu, that the 5_ state was the most likely candidate for the

perturbing state. Our ACPF D_ value of 47 cm -1, which is expected to be up to

20% too small, is not inconsistent with this assignment. We note that the llIg and

3H= states cross the A3_ + state in this region as well. However, if they were the

perturbing states, they have would have been expected to affect levels below N=9,

since they have significantly larger D, values than the SHg state. Thus our results

agree with the hypothesis of Borrell et al. that 5E_ is the most probable candidate

for the perturbing state.

IV. Conclusions

We have demonstrated that a CASSCF(2p)/MRCI+Q description in a

[Ss 4p 3d 2] lg] ANO basis set supplemented with diffuse functions provides a

quantitative description of the six lowest states of O2. The calculated potentials

are within 0.05 eV (1.5 kcal/mol) of the (accurate) experimental results. In addi-

tion, we have investigated the importance of substantially expanding the primitive

basis set and demonstrated that such expansions yield insignificant improvement in

the spectroscopic constants: the expanded basis set recovers 0.57 eV more atomic

correlation but D¢ increases by only only 0.01 eV.

Potential energy curves have also been reported for the weakly bound states

of O_. Based on a series of calibration calculations the sHg state is estimated to

have a D_ of 0.16+0.03 eV. This estimate is slightly larger than our preliminary

estimate, quoted by Bates, but the upper bound of our De is sufficiently large that

the importance of this state as a precursor should be reconsidered. The computed

spectroscopic constants for the other weakly bound systems are in reasonably good

agreement with previous FOCI estimates.
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Table III. Calculated energy values for O2 (in cm -1).

3 +
r c1_]_ A'3Au A Y_= 5IIg 3H= 1Hg s_ sH=

2.10 25784.41 27954.91 29276.27

2.30 5491.75 7408.75 8493.08

2.50 -4248.81 -2452.53 -1560.47 21041.97

2.70 -8143.70 -6374.92 -5638.27

2.80 -8793.02 -7011.36 -6340.75 15902.33 8111.17

2.90 -8893.33 -7085.20 -6474.02

3.00 -8615.03 -6770.91 -6212.59 30511.30

3.01 -6723.72 -6170.39 7334.67 4240.44

3.10 -8089.77 -6206.20 -5694.97

3.30 -6676.75 -4729.16 -4296.81

3.50 -5187.38 -3250.95 -2883.00 -45.36 2016.92 9530.66 6620.31

3.70 -3881.34 -2066.34 -1754.19 -778.25

3.80 -943.19

3.90 -1025.92

4.00 -2424.63 -985.14 -749.31 -1052.98 1169.42 3444.33 4171.39 2342.29

4.10 -1043.47

4.30 -964.44

4.40 1752.90

4.50 -1092.02 -343.33 -213.53 -853.44 297.38 1048.55 752.11

4.70 -739.23

4.80 694.87

5.00 -510.45 -170.19 -94.81 -584.91 -90.20 186.92 195.53

5.50 -252.66 -99.45 -52.70 -388.95 -188.69 -80.91 92.17 19.57

5.75 -190.53 -122.98 -11.48

6.00 -133.66 -61.05 -30.06 -258.31 -179.19 -136.78 -5.68 -25.15

6.25 -135.23 -20.94 -29.62

6.50 -75.86 -38.09 -16.58 -173.11 -142.72 -125.97 -26.51 -29.23

6.75 -27.07

7.00 -100.09 -24.95 -23.48

7.50 -29.88 -16.16 -5.45 -81.80 -78.28 -75.64 -19.61 -16.96

8.00 -13.99 -11.79

8.50 -15.02 -8.91 -3.00 -43.00 -9.67

9.00 -7.17 -2.78 -7.25

10.00 -7.30 -5.14 -2.66 -19.03 -19.94 -19.83 -3.49 -3.06

12.00 -2.88

20.00 0.00 0.00

50.00 0.00 0.00 0.00 0.00 0.00
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Table V. Spectroscopic constants for the weakly bound states of 02.

Calculation _

_l-Iu

[5_4p 3 + ld 2y lg] + (_p)
[58 4p 3 + ld 2f lg] + (sp)-ACPF

Saxon-Liu b

SE_

[5s 4p 3 + ld 2f lg] + (sp)

[58 4p 3 + ld 2f lg] + (sp)-ACPF

Saxon-Liu

3IIu

[58 4p 3 + ld 2f lg] + (sp)

Saxon-Liu

ll-lg

[58 4p 3 + ld 2f lg] + (sp)

Saxon-Liu

r, (ao) w,(cm -1) D+ (cm -1)

6.71(6.63) 36.8(37.3)

6.66 36.7

7.2 34.0

6.49(6.24) 31.1(42.8)

6.15 46.8

6.5 39.5

5.83(5.65) 60(59) 147.0(191.6)

5.5 165.2

6.17(6.09) 57(58) 111.5(137.8)

6.2 117.9

_The numbers in parenthesis include a Davidson correction.

b Ref. xx
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Abstract

The Caa and Ca4 metallic clusters have been investigated using state-of-the art ab

initio quantum mechanical methods. Large atomic natural orbital basis sets have been used

in conjunction with the singles and doubles coupled-cluster (CCSD) method, a coupled-

cluster method that includes a perturbational estimate of connected triple excitations,

denoted CCSD(T), and the multireference configuration interaction (MRCI) method. The

equilibrium geometries, binding energies and harmonic vibrational frequencies have been

determined with each of the methods so that the accuracy of the coupled-cluster methods

may be assessed. Since the CCSD(T) method reproduces the MRCI results very well, cubic

and quartic force fields of Caa and Ca4 have been determined using this approach and used

to evaluate the fundamental vibrational frequencies. The infrared intensities of both the

e' mode of Ca3 and the t2 mode of Ca4 are found to be small. The results obtained in this

study are compared and contrasted with those from our earlier studies on small Be and

Mg clusters.
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Introduction

There has been considerable recent interest in the properties of small clusters (see

for example Refs. 1-10), motivated principally by two issues. The first is the question

of convergence of cluster properties towards the bulk values. Of course some properties

will approach the bulk value more quickly than others as the duster size is increased. The

second issue is interaction between theory and experiment. The study of small clusters has

progressed very rapidly since accurate experimental studies may be used to evaluate the

predictive reliability of different theoretical methods, and then accurate theoretical studies

may be used to evaluate or aid in the design of new experimental techniques.

Our studies of small clusters a1'12 have focused on computing the structures, binding

energies, vibrational frequencies and infrared intensities of the trimers and tetramers of the

alkaline-earth elements beryllium and magnesium using elaborate treatments of electron

correlation. We have also examined a3 the equilibrium structures and binding energies of

the pentamers, Bes and Mgs. In the present study we extend our investigations to in-

clude Ca3 and Ca4. There are three previous studies 14'as of Ca4 (and none of Ca3) that

have incorporated electron correlation effects. In one Ca4 study a total binding energy of

18.3 kcal/mol, relative to four Ca atoms, was obtained at the single-reference single and

double excitation configuration interaction (CISD) level of theory, including Davidson's

correction a6 for higher excitations. In the other, a binding energy of xx.x kcal/mol was ob-

tained using a multireference CI approach (based on SCF orbitals). Based on our previous

studies of the Be and Mg clusters, it is likely that even the higher value is a substantial

underestimate of the true binding energy.

Another important component of our earlier studies aa-13'17 is the comparison of ge-

ometries and binding energies obtained with various electron correlation methods. The

s-p near-degeneracy effects in the alkaline-earth valence shell are very large, and strongly

influence the binding in the small clusters. It is not only essential to describe these non-

dynamical effects accurately, however, but also to account properly for dynamical correla-

tion in order to obtain reliable binding energies for these systems. Hence the most desirable

treatment might appear to be a full valence complete-active-space SCF (CASSCF) calcu-

lation followed by a multireference configuration-interaction (MRCI) calculation. This is

indeed an excellent level of treatment, but unfortunately it becomes very expensive to

apply in large basis sets and at many geometries.

ORIGINAL PAGE IS
OF POOR QUALITY



In our studies of the lighter alkaline-earth clusters, we have made extensive use

of the single and double excitation coupled-cluster approach (CCSD) corrected with a

perturbational estimate of triple excitations (CCSD(T)). is The CCSD(T) method performs

very well in comparison with MRCI results for the lighter alkaline-earth clusters, and

appears to treat both the non-dynamical and dynamical correlation effects in these systems

accurately. We have also established the reliability of the CCSD(T) method by full CI

comparisons on Be3.2° compared results obtained at the MRCI level of treatment with

those obtained using the single and double excitation coupled-cluster (CCSD) approach

and the CCSD(T) method, in which a perturbational estimate of the effects of connected

triple excitations has been included, is In these studies we established that the CCSD(T)

method performs very well in reproducing results obtained from the MRCI approach.

Based on many comparisons of full configuration interaction (FCI) and MP_CI energies, 19

it has been asserted that the MRCI results should be very close to the n-particle limit,

and we have established 2° that the MRCI and CCSD(T) results for Be3 are indeed very

close to the analogous FCI quantities. For comparison purposes, we have again used the

CCSD, CCSD(T) and MRCI methods in examining the potential energy surfaces of Ca3

and Ca4 so that it may be determined how well the coupled-cluster methods perform for

the series of alkaline-earth metals.

In the next section we describe the computational methods employed in this study

and in the following section our results are presented and discussed. A comparison of our

new results for the Ca clusters and our previous results for the Be and Mg clusters is also

given. The final section contains our conclusions.

Computational methods

Two atomic natural orbital 2a (ANO) basis sets have been used in this study. The

(22s 17p) primitive basis set is that of Partridge 22 and was augmented with a (4d 3f) even

tempered polarization set defined by a = 2.5ha0 for n = 0,...,k. The a0 values for the d

and f functions are 0.0232 and 0.0440, respectively. The smallest basis set consists of 5s,

4p and ld ANOs and will be denoted [5s 4p ld]. The larger basis consists of 6s, 5p, 2d

and If ANOs and will be denoted [6s 5p 2d lf]. The ANO contraction coefficients were

obtained by averaging the natural orbitals from single and double configuration interaction

(CISD) calculations on the lowest 1S and 1p states of atomic Ca. Only the pure spherical
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harmonic components of the d and f functions have been used.

As discussed in the Introduction, the CCSD, CCSD(T) and MRCI methods have

been used to treat electron correlation. In all cases, only the Ca 4s electrons have been

included in the correlation procedure. The coupled-cluster wave functions are based on

self-consistent field (SCF) molecular orbitals while the MRCI wave functions are based

on CASSCF molecular orbitals. All valence electrons were allowed variable occupancy in

all valence orbitals in the CASSCF calculations. References for the MRCI wave functions

were selected using a 0.05 threshold -- that is, all occupations having a component spin-

coupling with a coefficient of 0.05 or larger in the CASSCF wave function were used as

references in the MRCI procedure.

In analogy with small Be and Mg clusters, the equilibrium geometries of Caa and

Ca4 were constrained to have Dab and Td symmetry, respectively. Harmonic frequency

analyses demonstrate explicitly that these geometries are indeed minima on the Caa and

Ca4 potential energy surfaces. In addition, a linear structure for Caa was optimized and

found to be significantly higher in energy than the equilateral triangle. Hence it is expected

that the equilateral triangle and tetrahedron are the global minima on the Caa and Ca4

potential energy surfaces, respectively.

The quadratic, cubic and quartic force constants of Ca3 and Ca4 have been deter-

mined numerically and are given in symmetry internal coordinates. The symmetry internal

coordinate definitions are:

Ca3

Ca4

1

Sl(a_) - _,-_(rl + r2 ÷ ra) (1)

&o(e') - _(2r_ - T_- _3) (21
1

&b(e') = 7(T2 - _31 (a)

1

&(ai) -- _(rl+r=+ra+r4+rs+ro) (4)

1

&°(e) - v_(>_ - _2- T_+ 9._ - _ - _o) (5)
1

&b(e) : _(_ - _ + _ - ,,°) (61
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1
S3,(t_) -- VS(r2 -- rs) (7)

1

S3_(t_) - _(,._ - _.6) (8)

constants has been closely

be less than 0.1 cm -1 and

monic analyses have been

second-order perturbation

been treated as a spherical

TITAN set of programs 27

1

Ssz(t2) = _(T1 - r4). (9)

For Ca4, the numbering of bonds is such that if rl connects one pair of atoms, r4 connects

the other pair, and similarly for the pairs {r2, rs} and {r3, r_}. According to convention, 23

the a component of the doubly degenerate coordinates is defined such that it is symmetric

with respect to a cr_ reflection plane, whereas the b component is antisymmetric. The

z, y and z components of the triply degenerate coordinate are also defined according to

established convention. _4

The precision of the central difference numerical procedures used to obtain the force

monitored: the uncertainty in the harmonic frequencies should

in the fundamental frequencies less than 0.5 cm -1. The anhar-

performed with the SPECTRO program package 2s which uses

theory; Ca3 has been treated as a symmetric top 23 and Ca4 has

top. 26 The coupled-cluster calculations were performed with the

interfaced to the MOLECULE-SWEDEN suite of programs. 2s

The MRCI calculations were performed with MOLECULE-SWEDEN.

Results and Discussion

A. Equilibrium structures and binding energies

Table I contains the equilibrium bond distances, rotational constants and dissociation

energies (atomization energies) of Ca3 and Ca4 computed in this study. For Ca3 the

CCSD level of theory substantially underestimates the De value (i.e., 5.7 keal/mol or 47%

compared to MRCI) and therefore yields a bond length 0.22 a0 too long. However, the

CCSD(T) level of theory exhibits a significant improvement over the CCSD results: De

is only 0.9 kcal/mol less than the MRCI result and the equilibrium bond distance differs

from the MRCI value by only 0.01 a0. A similar situation is found with Ca4 -- the CCSD

level of theory substantially underestimates the binding energy and gives an equilibrium

bond distance 0.11 a0 too long. However, as was found for the Be and Mg clusters, 11'12

the CCSD level of theory performs better for Ca4 than it does for Caa. The CCSD(T)

5



results for Ca 4 (using the smaller ANO basis set) are in very good agreement with the

respective MRCI quantities. The CCSD(T) D, is only 0.2 kcal/mol less than the MRCI

value and the CCSD(T) re is actually 0.02 a0 shorter than the MRCI re. As with our

earlier studies 11'12 of small Be and Mg clusters, it thus appears that the CCSD(T) level of

theory provides a very good description of electron correlation effects in small Ca clusters.

It is interesting to note that comparison of the equilibrium bond distances obtained

with the CCSD, CCSD(T) and MRCI methods suggests that the bonding in small Ca

clusters is intermediate between the bonding in small Be and small Mg clusters, as would

be expected based on the bulk binding energies.29 For Be3, where sp hybridization is known

to play an important role in the binding, the CCSD level of theory yields a reasonable

equilibrium bond distance when compared to MRCI or CCSD(T). However, for Mg3, where

the binding is more dominated by dispersion, the CCSD level of theory gives a bond

distance that is significantly too long (0.55 a0). The discrepancy in the CCSD bond length

for Ca3 is between that found for Be3 and Mg_, but is much closer to the value obtained

for Be3 than that found for Mg3. It therefore seems that sp hybridization is an important

component of the bonding in Ca3, though not as important as it is in the bonding of Be3.

For Ca4, only the CCSD and CCSD(T) levels of theory could be used in conjunction

with the larger ANO basis set since the MRCI procedure would have been prohibitively

expensive. Using the [68 5p 2d lf] ANO basis set, the CCSD(T) equilibrium bond distance

for Ca4 is 0.29 a0 shorter than the analogous Ca3 value indicating the increased importance

of sp hybridization in the bonding as the cluster size becomes larger. The best D, values for

Ca_ and Ca4 obtained in this work are 12.1 kcal/mol and 31.5 kcal/mol, respectively. As

expected, our best computed D, for Ca4 is substantially larger than the previously best

computed valueJ 4 Based on the fact that the separated-atom limit is described better

than the molecule, the De values for Ca3 and Ca4 are probably underestimated somewhat.

We say "probably" because it is not certain whether the effects of core-correlation will

increase or decrease the D, values. However, based on a recent study of Ca2 by Dyall and

McLean, 3° it is likely that the effects of core-correlation will not affect the D¢ values by

more than 1-2 kcal/mol.

B. Vibrational frequencies of Ca3

The quadratic force constants and harmonic frequencies of Ca3 obtained at the



CCSD, CCSD(T) and MRCI levelsof theory are presentedin Table 2. The [6s 5p2d lf]
ANO basisset wasused with all of thesemethods. In view of the underestimation of the

bond strength at the CCSD level, it is not surprising that the CCSD quadratic force con-

stants and harmonic frequencies are noticeably smaller than the analogous MRCI values.

Conversely, the CCSD(T) quadratic force constants and harmonic frequencies are in excel-

lent agreement with the MRCI quantities, being only 1 cm -1 and 2 cm -1 smaller for the

a_ and e t modes, respectively. The best computed harmonic frequencies of Ca_ obtained

in this work are 95 cm -1 and 85 cm -1 for the a_ and er modes, respectively. These values

should be reasonably reliable and are probably low rather than high, assuming that the

binding energy is still somewhat underestimated. The harmonic frequencies of Ca3 are

small not only because the bonding in Ca3 is relatively weak, but also because of the large

mass of the Ca atom and the 1/v/-m dependence of the harmonic frequency, where m is

the reduced mass of the system.

We have computed cubic and quartic force constants using the CCSD(T) method,

since the CCSD(T) and MRCI harmonic frequencies are in excellent agreement and the

former approach is significantly cheaper. The complete set of cubic and quartic force con-

stants and the resulting anharmonic constants are presented in Table 3. Table 4 contains

the fundamental vibrational frequencies of Ca3 determined via second-order perturbation

theory. In addition, Table 4 presents the infrared (IR) intensity of the e ' vibration deter-

mined using the double harmonic approximation.

The absolute anharmonic contribution to the vibrational frequencies is small, only

2 cm -1 for both vibrations, and the percentage effect is about half that observed previously

for the Mg clusters. Combining the MRCI harmonic frequencies with the anharmonic

correction obtained with the CCSD(T) method gives 93 cm -1 and 83 cm -1 as our best

estimates for the fundamental vibrational frequencies of the a_ and e_ modes, respectively.

Because the IR intensity of the e_ mode is so small, the best prospect for determining the

vibrational frequencies experimentally is likely to be an indirect technique such as negative

ion photoelectron spectroscopy.

C. Vibrational frequencies of Ca4

The quadratic force constants and harmonic frequencies of Ca4, determined at the

CCSD, CCSD(T) and MRCI levels of theory, are presented in Table 5. A noteworthy point



is that the CCSD harmonic frequenciesarein better agreementwith the MRCI valuesthan

was found for Ca3. This is especially true for ca2 and wa where the differences are only

4 cm -1 and 8 cm -1, respectively. This observation supports our earlier analysis regarding

the increased importance of sp hybridization, and consequently covalent bonding, in Ca4

relative to Ca3. The CCSD(T) quadratic force constants and harmonic frequencies are in

excellent agreement with the respective MI_CI quantities. Indeed, ca1 and ¢v2 only differ

by 1 cm -1 and ca3 differs by less than this. These comparisons suggests that the CCSD(T)

level of theory is closely approaching the n-particle limit for Ca4.

The CCSD and CCSD(T) harmonic frequencies obtained with the larger [6s 5p 2d lf]

ANO basis set demonstrate the importance of using large one-particle basis sets in order

to obtain highly accurate harmonic frequencies. The difference between the CCSD(T)

harmonic frequencies in the two basis sets used is larger than the differences due to cor-

relation treatment among the small basis results. As with Ca3, it is expected that the

CCSD(T)/[6s 5p 2d lf] quadratic force constants and harmonic frequencies should be

very reliable.

Table 6 contains the complete cubic and quartic force field of Ca4 obtained at the

CCSD(T) level of theory with the larger ANO basis set. The resulting anharmonic con-

stants are given in Table 7, while the fundamental vibrational frequencies and IR intensities

of Ca4 are presented in Table 8. As with Caz, the absolute anharmonic corrections for

the vibrational modes of Ca4 are relatively small at only 3 cm -1, 1 cm -1 and 1 cm -1 for

wa, w2 and w3, respectively. The percentage effect on the fundamental frequencies is also

similar to that found for Ca3. The IR intensity of the t2 vibration is 2.1 km/mol, which

is substantially larger than the IR intensity of the e' vibration in Ca3, but again the best

method to obtain fundamental frequencies from experiment may be an indirect approach.

D. Summary of CCSD(T) Results for Small Be, Mg and Ca Clusters

A summary of the equilibrium structures, vibrational frequencies, infrared intensities

and binding energies for the alkaline-earth trimers is presented in Table 9 and for the

tetramers in Table 10. The beryllium and magnesium cluster results are taken from our

previous studies. 1a J2 In all cases, the results are those obtained with the largest ANO

basis set used in the particular investigation. For the trimers, Table 9 contains the MR.CI

equilibrium bond distance, harmonic frequencies and dissociation energy. The fundamental

8



frequencieswereobtained by adding the CCSD(T) anharmonicity to the MlZCI harmonic

frequencies. The IR intensities were determined with the CCSD(T) method. For the

tetramers, all of the results wereobtained at the CCSD(T) level of theory sinceit wasnot

possible to use the MRCI method in conjunction with the larger ANO basis sets for the

tetramers. Thus the values summarizedin Tables 9 and 10 represent the best computed

quantities to date for the alkaline-earth trimers and tetramers.

Examination of the binding energiesin Table 9 indicates the expectedtrend basedon

bulk binding energies-- that is the binding energiesdecreasein the order Be3> Ca3> Mg3.

The vibrational frequencies,on the other hand, decreasein the order Be3 > Mg3 > Ca3,

but this is determinedin large part by masseffects,sincethe symmetry internal coordinate

quadratic force constants for Mg3 are smaller12 than those for Ca3. The IR intensity of
the e I mode is small for all of the alkaline-earth trimers.

Comparison of the De values of the tetramers shows the same trend as observed

for the trimers, although the ratios are somewhat different. The binding energy of Be4

is significantly larger than that of Be3, though the Be4 equilibrium bond distance is only

0.28 a0 shorter than the Be3 value. The ratio D,(M4)/D_(M3) is largest for M = Mg

and it is therefore not surprising that Mg4 ex.hibits the largest reduction in bond length

(0.50 a0) relative to the trimer. The reduction in the Ca4 bond length (relative to the

trimer) is about the same as that observed for Be even though the ratio De(M4)/D,(M3)

is significantly larger for M = Be than for M = Ca. This last observation is probably due

to the fact that the valence orbitals of Ca are larger than those of Be.

The harmonic frequencies of the tetramers exhibit the same trend as observed for the

trimers. Again, the Mg4 vibrational frequencies are higher than the analogous Ca4 values

because of the mass effect. The fundamental frequency v3 for Be4 has a large positive

anharmonic correction that is not observed in either Mg4 nor Ca4. This Be4 phenomenon

was explained in some detail previously, 11 and relies on a symmetry argument applicable

to tetrahedral X4 species. Its apparent inapp]_icability to Mg4 and Ca4 is probably due

to several factors, including the much weaker bonds present in Mg4 and Ca4 relative to

Be4. The IR intensities of the tetramer t2 vibrations are much larger than those calculated

for the trimers. Nevertheless, the Mg4 and Ca4 intensities remain very small and it is

likely that the best prospect for experimental determination of these frequencies will be an

indirect method like negative ion photodetachment. On the other hand, the IR intensity



of the t2 mode of Be4 is certainly large enough to allow direct experimental observation

provided that an experiment can be designed which will produce enough Be4.

Conclusions

The CCSD, CCSD(T) and MRCI electron correlation methods have been used to

investigate the equilibrium structures, vibrational frequencies and binding energies of the

Ca3 and Ca4 metallic clusters. In agreement with our earlier studies of the analogous Be

and Mg clusters, it is found that the CCSD(T) method reproduces the MRCI re, harmonic

frequencies and De values very well. The agreement between these methods is somewhat

better for Ca4, but is still very good for Ca3. Complete cubic and quartic force fields

of Ca3 and Ca4 have been determined with the CCSD(T) method in conjunction with a

large ANO basis set and have been used to evaluate the anharmonic corrections needed to

compute the fundamental frequencies. The anharmonic corrections have been determined

via second-order perturbation theory. The absolute value of the anharmonic corrections

is relatively small, although as a percentage relative to the fundamental frequencies they

are similar to those observed previously for the Mg clusters. In spite of the fact that Ca is

larger and more polarizable than Mg, and that Ca clusters are more strongly bound than

Mg clusters, the IR intensities of the e' mode of Ca3 and of the t2 mode of Ca4 are small

and similar to the analogous Mg quantities. It is unlikely that direct observation of these

fundamentals will be possible.

The MRCI and CCSD(T) equilibrium structures, vibrational frequencies and binding

energies of the alkali metal (Be, Mg and Ca) trimers and tetramers have been summarized.

The binding energies of the trimers and tetramers follow the bulk metal binding energies

although the ratios of the small cluster De values do not agree with the bulk metal ratios.

The vibrational frequencies follow a different trend as the Mgn (n=3,4) frequencies are

larger than the respective Ca values, but this is due to the larger mass of the Ca atom,

since the symmetry internal coordinate force constants (which are independent of mass)

for the Ca trimer and tetramer are larger than the respective Mg quantities.
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Table 1

Total energies (Eh), bond lengths (a0), rotational

constants (MHz) and binding energies (kcal/mol) for Ca3 and Ca4.

Basis E _ re A B De Do

Ca3 CCSD [6s 5p 2d l f] 0.370728 8.097 1378 689 6.4 6.1

CCSD(T) [6s 5p 2d lf] 0.378316 7.884 b 1453 726 11.2 10.8

MRCI [6s 5p 2d lf] 0.379234 7.874 1457 728 12.1 11.7

Ca4 CCSD [hs 4p ld] 0.168123 7.935 717 14.3 13.6

CCSD(T) [hs 4p ld] 0.180604 7.806 741 22.2 21.4

MRCI [hs 4p ld] 0.179059 7.824 738 22.4 21.7

CCSD [6_ 5p 2d If] 0.180579 7.694 763 20.9 20.1

CCSD(T) [6s 5p 2d l f] 0.197496 7.591 c 784 31.5 30.6

The energy for Ca3 is reported as -(E÷2030) and for Ca4 as -(E÷2707).

b Vibrationally averaged bond lengths: rg = 7.917 a0 and r,, = 7.915 a0.

c Vibrationally averaged bond lengths: rg -- 7.615 a0 and r_ = 7.613 ao.
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Table 2

Symmetry internal coordinate force constants (aJ//_2)

and harmonic frequencies(cm-1) for Ca3.

Fll F_ _l(a_) _(e,)

CCSD 0.04415 0.08141 75 72

CCSD(T) 0.06952 0.10835 94 83

MRCI 0.07126 0.11460 95 85
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Table 3

Non-zero cubic (aJ/-_ 3) and quartic (aJ/_') force

constants and the anharmonic constants (cm -1) for Ca3.

Flll -0.133

F12,_2,_ = F1262b --0.152

F2a2a2a : ---F2a2b2b -0.105

Fl111 0.156

Fl12,_2,_ = Fa1262b 0.163

_'_12a2a2a : ---F12a2b2b 0.116

F2a2a2a2a = F2b2b2b2b = 3F2a2,_262b 0.239

Anharmonic Constants

zal -0.60

z21 -1.38

x22 -0.41

g22 0.18
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Table 4

Comparison of the CCSD(T) harmonic and fundamental frequencies

of Ca3 (cm-1). Infrared intensities (km/mol) are also included.

Mode ca v ca - v I

a_ 94 92 2 0

e' 83 81 2 0.4
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Table 5

Symmetry internal coordinate quadratic force constants (aJ//_ 2)

and harmonic frequencies (cm -1) for Ca4.

Basis FI_ F22 F33 wl(a_) w2(e) wa(t:)

CCSD

CCSD(T)

MRCI

[5_ 4p ld] 0.05350 0.12546 0.08688 95 73 86

[5s 4p 1_ 0.07166 0.14253 0.10439 110 78 94

[5s 4p ld] 0.06960 0.14091 0.10397 109 77 94

CCSD

CCSD(T)

[6s 5p 2d lf] 0.07463 0.15725 0.11282 113 82 98

[6s 5p 2d If] 0.09446 0.17250 0.13062 I27 86 105
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Table 6

Non-zero cubic (aJ//_ a) and quartic (aJ//_ 4) force

constants for Ca4.

-Flll

F12a2a = Fl_2b

F13_3_ = F13y3_ = F13z3z

F2a2a2a : --F2a2b2b

2 F -2F,
F2_aza. = -2F_z_z_ = -2F2_3yz_ = _ 2sa_a_ = :7_ 2s3_3_

F3_c3y3z

-0.110

-0.140

-0.126

-0.074

-0.190

-0.013

Fl111 0.077

Fl12_2a = Fl1262b 0.091

Fl13z3z = F113y3y = Fll3z3z 0.076

F12a2a2a = --F12a262b 0.058

F12a3z3z = -2F12a3z3z -- -2F12a3y3y = _3F12b3z3z __-- _-2 F12b3y3y 0.119

F13z3y3z -0.001

F2a2a2a2a = fJ2b2b2b2b = 3F2a2a262b 0.162

F2a2a3z3z 0.176

F26263_3z 0.044

1 F 3F2b2bzzz_) 0.077aF2a2a3y3y-= F2a2a3z3z = "_( 2a2a3z3z +

a .__ 1 F. F2b2b3z3z) 0.143F2b2b3y3y F2b2b3z3z = 3(3 2a2a3z3zA-

vffrF' F2b2bZz3_) 0.057a_i_2a2b3y3y : --F2a2b3_z3z : "-_"L, 2a2a3z3z --

F3z3z3_:3z = F3y3y3y3y = F3z3z3z3z 0.262

F3=z_z_3y = Fz=z=zzz_ = Fzyz_z_z_ 0.043

Dependent force constants related to F2a2,_zzz_ and _F2b2bZz3_.
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Table 7

Anharmonic constants (cm -1) for Ca4.

Anharmonic Constants

xll -0.31

x21 -0.52

:c22 -0.13

x31 -0.83

x32 -0.35

x33 -0.18

g22 0.09

g33 0.03

t23 -0.05

_33 -0.03
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Table 8

Comparisonof the CCSD(T) harmonic and fundamental frequencies

of Ca4 (cm-1). Infrared intensities (kin/tool) are alsoincluded.

Mode w v _o - v I

al 127 124 3 0

e 86 85 1 0

t2 105 104 1 2.1
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Table 9

Summary of results for the alkaline earth trimers. _

re wl(al) w2(e') ul _: De

Be3 4.200 490 427(0.5) 469 410 22.5

Mgz 6.373 110 115(0.2) 101 109 6.3

Caz 7.874 95 85(0.4) 93 83 12.1

a Units are a0 for re, cm -1 for the harmonic and fundamental frequencies, and kcal/mol

for De. The value in parentheses is the IR intensity in km/mol. The Be3 results are from

reference 11 and the Mgz results are from reference 12. See text for details of correlation

methods used.
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Table 10

Summary of CCSD(T) results for the alkaline earth tetramers.:

Be4 3.921 663 469 571(29.7) 639 455 682 79.5

Mg4 5.877 192 147 171(2.4) 184 143 167 23.9

Ca4 7.591 127 86 105(2.1) 124 85 104 31.5

Units are a0 for re, cm -1 for the harmonic and fundamental frequencies, and kcal/mol

for De. The value in parentheses is the IR intensity in km/mol. The Be4 results are from

reference 11 and the Mg4 results are from reference 12.

22



On the evaluation of derivatives of Gaussian integrals

Trygve ttelgaker

Department of Chemistry

University of Oslo

P.O.B. 1033, Blindern

N-0315 Oslo 3

NORWAY

and

If

Peter R. Taylor

ELORET Institute

Palo Alto CA 94303

USA

Abstract

We show that by a suitable change of variables, the derivatives of molecular

integrals over Gaussian-type functions required for analytic energy derivatives can

be evaluated with significantly less computational effort than current formulations.

The reduction in effort increases with the order of differentiation.

I. Introduction

Analytic energy derivative methods have revolutionized the application of com-

putational quantum chemistry to problems of chemical interest [1]. The location

and characterization of stationary points on polyatomic molecular potentiM energy

surfaces can be accomplished so much more efficiently using analytic derivatives

than with techniques based on computing energies alone that the development and

extension of analytic derivative methods has been one of the most active fields of

methodological research in quantum chemistry in recent years. Given the gradi-

ent and Hessian of the energy with respect to the nuclear coordinates, a variety of

strategies have been developed that are guaranteed to converge to minima on po-

tential surfaces and that can efficiently locate other stationary points, particularly

t Mailing address: NASA Ames Research Center, Moffett Field, California 94035-

1000



transition states. These strategies can also be used to "walk" on surfaces from one

minimum to another, thereby defining a reaction coordinate, and among the most

elegant and conceptually illuminating studies of this sort are the investigations

of Ruedenberg and co-workers on rearrangement reactions of small hydrocarbon

species (see Refs. 2-5 and references therein). It is thus a great pleasure to dedicate

this contribution to Professor Ruedenberg on the occasion of his 70th birthday.

Of course, in order to perform such walks and optimizations it is imperative

to evaluate the energy derivatives efficiently at the computational level of interest

(Hartree-Fock or some correlated treatment). As noted above, much work has been

performed in this area, and several reviews are available [1,6,7]. We shall concentrate

here on a topic that ultimately affects the computational effort necessary to evaluate

energy derivatives for any ab initio method that relies on a basis set expansion of

Gaussian one-electron functions.

Wave functions for polyatomic molecules are invariably expanded in a basis set

that is centred on the various nuclei, and so in a calculation of the energy derivative

of nth order with respect to the nuclear coordinates, up to nth-order derivatives of

the one- and two-electron integrals are required. These derivative integrals can in-

volve differentiation of the operators as well as differentiation of the basis functions,

but the greatest computational problems arise from the differentiation of the basis

functions. Like the evaluation of integrals over Gaussians [8,9], the calculation of

integrals over differentiated Gaussians has been the subject of many investigations

and numerous efficient computational schemes have been devised. In this work we

show how the efficiency of derivative integral evaluation can be improved by some

simple manipulations of variables. We shall briefly review the McMurchie-Davidson

scheme [8] for computing Gaussian integrals and derivative integrals, and then show

how a change of differentiation variables simplifies the formulas.

II. Derivative Integral Formulas

We shall expand the Gaussian charge distributions that appear in the integrals

in Hermite functions, as described by McMurchie and Davidson [8] (see also Saun-

ders [9]). Let us represent an unnormalized Cartesian Gaussian function centred

at A by

(1)*_AYA_A

where _A -- x-A_, etc. We can consider one Cartesian direction, say x, represented



as

i¢xp(-a_).Gi(_,a,A_)= _a

The overlap distributionof two such functions isexpanded as

f)ij(x,a,b,A.,B.) =- Gi(x,a,A=)Gj(x,b,B.)

i+j

= E E_J(a'b'A='B*)A*(x'P'P*)'
t=O

where the Hermite function A,(x,p,P_:) is defined by

with

and

A_(z,p, P=) = (O/OP,)t exp(-pz_)

P P

p=a+b.

The expansion coefficients E_ 3(a, b, A., B=) are obtained from

_ iEli_ (t-_p _-1 + +

where

and

(2)

(3)

(4)

(5)

(6)

(7)

E0°° --- exp(-pR_). (9)

Henceforth we shall not always list the arguments of the expansion coefficients or

Hermite functions, but we wish to emphasize here that the expansion coefficients

depend on a, b, and R= only, while the Hermite functions are independent of R.:

i+j

flij(z,a,b,A.,B.) = _ Z_J(a,b,R.)A,(z,p,P=). (10)
t=0

In terms of the Hermite functions and expansion coefficients we can express a

two-electron integral

f/_y_G exp(-ar-_) -j ' n exp(-br_)xB YB zB

X 7121 i' k' rn' 2 j' l' n'- ,cycZo¢_p(-c_c)_vyv_o¢_p(-d_D)d_id_ (11)

R.=A=-B= (8)



as

where

i+j i'+j'

• " i'j'
E E_J(a'b'A_'B_) E E¢ (c,d,C_,D_)
t=O t_=O

k+l k'-4-1 _

u_-_-0 uJ:O

rn_n rnl _-n I

x E Er'_(a,b, Az,B_) E E_'V"_'(c'd'Cz'Dz)
v=O vt=O

× (12)

=// A_(x,p,P_)At,(x,q,V::)A_,(y,p,P_)A_,(y,q, Oy)

× A,(z,p, Pz)A,,(z,q,Q_)rl-21drldr:. (13)

and q and (_ are defined analogously to p and fi but for the second charge dis-

tribution. Thus in practice we evaluate integrals over the Hermite function basis

and combine those with the expansion coefficients to give integrals over primitive

Gaussians. Some modifications to the form (12) are desirable from the point of

view of efficiency, as discussed by Saunders [9], but for schematic purposes we can

use (12). The first step, evaluation of the Hermite function integrals, is fast. The

second step, which we can regard as a transformation from the Hermite function

basis to the Cartesian Gaussian basis, is relatively time-consuming and is certainly

more expensive than calculating the Hermite function integrals. Finally, if required,

we combine these integrals with basis set contraction coefficients to _ve the final

integrals. In fact, some of the expansion steps can be taken outside the contraction

step, with a consequent improvement in efficiency.

In a derivative integral we are interested in derivatives of _ij: O_ij/OA, and

cqf'lij/OB_ for first derivatives, for example. Conventionally, we would differentiate

the orbitals (2) first and then expand the overlap distributions of the differentiated

orbitals analogously to _ij above.

to A. we obtain

cOA_ -

For example, for the derivative with respect

gJA . (14)
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Note that the sumhereis overmoreterms than appearin the undifferentiated charge

distribution (3) -- higher orders of differentiation would increasethis summation
range further. The new coefficientsF_ j are defined in terms of the coefficients E_ j

above by

F:J =2_z_÷l'j - iE_-"J (15)

Analogous coefficients can be defined for higher orders of differentiation or for dif-

ferentiation with respect to B,. In this approach, then, we compute derivative inte-

grals using the same general scheme (12) as for undifferentiated integrals. Since the

expansion of the differentiated charge distributions in Hermite functions is longer

than for the undifferentiated distributions, the work required to transform from the

Hermite function basis to the Cartesian Gaussian basis is greater. Further, as the

order of differentiation increases this extra work becomes larger and larger. Hence

this approach is not well-suited to higher derivatives.

Let us instead consider differentiation with respect to the variables P, and R_,

for which
0 a O 0

-- = + -- (16)
cgA, p OP, OR,

and
0 b 0 0

OB--: = -_O--P:=- ba_ (17)

We recall that the Hermite functions are independent of R_, while the expansion

coefficients are independent of P=. Hence we can expect the expressions for the

differentiated charge distributions to be simpler in terms of these variables, although

we must eventually transform the derivatives back to the A,,B_ representation. We

obtain for the derivatives

OFti# i+j _+j
0v--:=E =E a,+,

t_0 t_0

(18)

and

Of_j i+J OE_J At (19)
OR, - _ OR= "

t=O

Denoting OE_ j/OR_ by E_J;a, we obtain the expansion relation

_ "" 1._ b.._ij;,E_+I,j;a _ 1 E,S; 1 £(R,E_ "i;' + E_') + (t + "]_,+:t
--_p _-1 p

(20)



by differentiating the relation (7) above.
We canmake several important observationsabout thesederivative formulas.

First, the combiIlation of expansioncoefficientsand Hermite functions in (18) above
is overexactly the samerangeas the summation to give undifferentiated integrals:

the only difference is that the degreeof the Hermite function has increased by

one. Hencethe code required to evaluate this term is the sameas required in the

undifferentiated case,and the number of operations is also the same. (It is easy

to see that this holds true in any order of differentiation for this term.) As we
saw above,this is not the caseif we differentiate with respect to the variables A_

and B_, because then a linear combination of different degree Hermite functions

and expansion coefficients appears.

Second, calculation of the differentiated expansion coefficients /_t;1 requires

essentially the same code again as for the undifferentiated case, with the obvious

addition of an extra term in the expansion relation, and a starting value

E00;1 _ 2abRzEOoO
0

P
(21)

obtained by differentiating (9). As we noted, the index range of the coefficients that

are required is the same as that for the undifferentiated case, so the actual work

required to combine Hermite function integrals and expansion coefficients does not

increase. (The precomputation of the expansion coefficients themselves is of course

a very rapid step.)

Third, in the usual scheme the index range of the program loops over the

variables t, u, v depends on the direction of differentiation (i.e., differentiation with

respect to As, Ay, etc). Thus these loops must be executed with different ranges

for each of the three directions for first derivative integrals, for example. With

our transformation of variables, the loop index ranges become independent of the

direction of differentiation, so the program logic is simplified and the overheads

are reduced. We may also note here that this approach in no way diminishes the

possibilities for vectorizing the calculation of the integral derivatives. Indeed, the

simplifications to the program loop structure are likely to enhance these possibilities.

Fourth, we can obtain an additional simplification as follows. Adding (16)

and (17) we obtain
0 0 0

- (22)
OB_ OP_ OA_
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Now, (in addition to saving one multiplication) this form of the expression for

the derivative with respect to B, does not depend on the orbital exponents at

all. Hence we can delay the transformation to the B_ derivative until later in the

calculation, for example, until after the contraction step, so that the time required

for this variable transformation becomes negligible. This is most important for first

derivatives, as in any order of differentiation only one term can be treated this way.

In the case of higher derivatives there is a variety of terms to be considered but

the scheme remains essentially the same. For example, the nth-order differentiated

expansion coefficients with respect to R, are obtained from the recursion formula

with starting values

"" __ij;n--1 l]i_iJ;n- (R=E_ 3;'_ + _,_ ) + (t + "/_+1 (23)

and the identification

(25)

Higher derivatives of the Hermite functions with respect to P_ (19) are trivially

obtained. We note further that if the two charge distributions that appear in an

integral are differentiated separately, the total savings is the product of the individ-

ual reductions in work, since the two differentiations are independent. For multiple

differentiation of the same charge distribution, we recall that by using our trans-

formation of differentiation variables the summation range in the Hermite function

to Cartesian Gaussian transformation is independent of the order of differentiation.

Hence the savings increase as the order of differentiation increases, since in the

conventional scheme the work required to accomplish this transformation increases

substantially with the order of differentiation. In order to obtain an estimate of

what savings are possible, we must also include an estimate of the effort required

to transform back to the A_,B_ representation. We shall now present operation

counts showing that it is always preferable to use our transformation of differenti-

ation variables.

In order to simplify the counting we consider only floating-point operations

(multiplication and addition), which are weighted equally. In addition, in our count

we have not taken advantage of the possibility of deferring transformation of some

EOO;,-,+a 2ab(R_E°°;'_ + hE0 °°;'_-1) (24)0 _ --
P



derivatives until after contraction: in effect, we are counting operations only for

primitive Gaussians and ignoring any additional savings that might accrue from

moving manipulations outside the contraction step. If anything, neglecting this

possibility favours the conventional approach to derivative integrals.

We have listed operation counts for differentiation of SS, PP, and DD distri-

butions in Table 1. We have not included the calculation of the Hermite function

integrals, which is fast and contributes the same work to both cases, the conventional

approach and our new scheme. Further, the transformation of the second charge

distribution in the integral has also been excluded. We see that for the SS case the

total operation count is not much affected by whether or not the transformation of

variables is performed. However, for higher angular momentum functions there is

a decided advantage to using the transformation of variables, and this advantage is

clearly growing with the order of differentiation. As a further illustration of this, we

note that for third derivatives of a PP distribution, for example, the conventional

method would require 14 448 operations, while using the transformation of variables

the work would be reduced to 8 340 operations: a savings of 42%.

Finally, some other aspects of this scheme deserve comment. We note that

0 bO aO

OR. p OA, p OB," (26)

o a ButTherefore, the operation b'X--:,is not the same as the differentiation 0OA® OB® "

if A and B coincide then the differentiation with respect to R, does not contribute

to the energy derivative: only the differentiation with respect to P_ contributes.

This simplification is already used in the ABACUS program [10]. We also note

that the use of translational invariance to reduce the computational labour is not

affected by our transformation of variables: for first derivatives, for example, we

have
dI dI

d--_ + dQ----'_= 0, (27)

where I represents the two-electron integral in (11), from the use of translational

invariance.

Conclusions

We have shown that by employing a transformation of differentiation variables,

the work required to evaluate derivative integrals can be substantially reduced. The



advantages of our new approach increase both with the order of differentiation and

with the angular momentum of the Gaussian functions involved. Savings will be

obtained in the calculation of energy derivatives for any wave function that is ex-

panded in a Gaussian basis. In particular, the economies obtained by applying these

methods to the calculation of third or higher derivative integrals will be substantial.
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Table 1. Operation counts for differentiation.

SS PP DD

First Derivatives

Hermite/Cartesian Transformation

P_., R, to A,, B. Transformation

Total

12

9

21

24Conventional

396

81

477

672

4 032

324

4 356

6 144

Second Derivatives

Hermite/Cartesian Transformation

P., R. to A., B. Transformation

Total

42

93

135

150Conventional

1 386

837

2 223

3 678

14 112

3 328

17 460

30 912
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Abstract

We have calculated the second hyperpolarizability 3' of neon using the CCSD(T)

method. The accuracy of the CCSD(T) approach has been established by explicit compar-

ison with the single, double and triple excitation coupled-cluster (CCSDT) method using

extended basis sets that are known to be adequate for the description of 7- Our best es-

timate for 7o of 1104-3 a.u. is in good agreement with other recent theoretical values and

with Shelton's recent experimental estimate of 108+2 a.u. Comparison of the MP2 and

CCSD(T) hyperpolarizability values indicates that MP2 gives a very good description of

the electron correlation contribution to 70. We have combined MP2 frequency-dependent

corrections with the CCSD(T) 70 to yield values of 7(-2w; w, w, 0) and _,K(_w; W, 0, 0).



1. Introduction

Theoretical determination of hyperpolarizabilities has been a topic of much interest

recently, since knowledge of atomic and molecular hyperpolarizabilities is central to the

understanding of the non-linear response of matter to light. In particular, organic materials

with large hyperpolarizabilities are candidates for applications such as optical switching

and second harmonic generation, and there is great potential for interaction between theory

and experiment in the study of these systems.

From a theoretical point of view, it is important to understand the requirements for

determining accurate hyperpolarizabilities for small systems, because it is possible to use

large one-particle basis sets and sophisticated electron correlation treatments for these

species, and thereby to evaluate the effects of approximations that will be necessary for

the study of the hyperpolarizabilities of larger systems. Hence for small systems it is

desirable to estimate the accuracy of the calculated hyperpolarizability. This may be

accomplished in two ways. First, the quality of the one and n-particle approximations

used in the calculation can be systematically improved and the convergence of the result

can be monitored. This is perhaps the preferred approach from a theoretical standpoint.

Alternatively, the theoretical value can be compared directly with experiment, although

the possibility of error cancellation between the one and n-particle approximations must

always be borne in mind.

Study of the hyperpolarizabilities of the rare gas atoms has a number of advantages.

In particular, for neon sophisticated levels of theory and large one-particle basis sets can

be employed. Experimental gas-phase electric-field-induced second harmonic generation

data for the rare gases is available over a range of frequencies 1 , which makes extrapolation

to the static limit possible for the purposes of comparison with a theoretical static value.

In addition, vibrational effects (which have been shown to be non-negligible for some

molecular values, see, for example, Refs. 2 and 3) vanish for atoms.

3



It must be noted, however, that it is a non-trivial task to demonstrate convergence

of calculated valuesfor hyperpolarizabilities. Previous work has shown that there can be

a much larger electron correlation contribution to hyperpolarizabilities than for linear po-

larizabilities, and that the contribution of higher excitations is not insignificant (see,for

example, Refs.4-6). For example, in the caseof 7 of neon, where the effect of electron

correlation is about 40 a.u., or 40% of 7, the perturbational estimate of triple excita-

tions contributes 8 a.u. or 20% of the total electron correlation contribution. 4 Since the

contribution of higher excitations is so large, the applicability of approximate methods

for estimating the effects of higher excitations in hyperpolarizability calculations might

be questioned. For example, the single and double excitation coupled-cluster method in-

cluding an estimate of triple excitations through the fourth and partially the fifth order

of perturbation theory, (CCSD(T)) 7 has had great success in describing the structure and

frequencies of a number of 'difficult' chemical systems -- that is, systems whose wave

functions are not dominated by a single reference. 8'9 This success notwithstanding, it is

essential to investigate the utility of this approach specifically for determining accurate

hyperpolarizabilities.

The reliability of a correlation treatment is best evaluated by comparison with a full

configuration-interaction (CI) calculation in the same one-particle basis set. However, since

even at the self-consistent field (SCF) level of theory diffuse f type functions contribute

10 a.u. to the hyperpolarizability of Ne 4, a full CI calibration in a realistic basis set is not

feasible. Here, in order to establish the accuracy of the CCSD(T) method for 7 of neon,

we compare instead to results obtained with the full single, double and triple excitation

coupled-cluster method (CCSDT), 1°'11 in a basis set which is known to be adequate for

the description of hyperpolarizabilities. We can thus assess the accuracy of the computed

CCSD(T) value, as well as compare it with experimental and other theoretical values. We

note that a previous study has demonstrated that for correlation energies, CCSD(T) is an



excellent approximation to CCSDT.12

2. Computational Methods

The one-particle basis sets used in this work are similar to those employed previously. 4

They were derived from van Duijneveldt's (13s8p) primitive set 13 augmented with a (6d4f)

polarization set, with exponents chosen as an even-tempered sequence a= 2.5'_a0; n

= 0,...,k with a0 = 0.20, 0.61 for the d and f functions, respectively. This was con-

tracted to [4s 3p 2d If ] using atomic natural orbitals, a4 The two outermost sets of

_pd functions and the outermost f function were uncontracted to give basis C, denoted

[4+1+1s 3+1+1p 2+1+1d l+lf ]. We use the notation C in order to be consistent with

our previous study. 4 Additional diffuse functions were then added by extrapolating from

the outermost function in an even-tempered sequence, a-- 2.5-'_a0. For example, the ad-

dition of one set of diffuse functions is denoted + (lslpldlf). In some calculations the

basis was further augmented with two diffuse g functions with exponents of 0.29 and 0.11.

Basis set C was completely uncontracted, and two tight d functions were included (ad

= 123.53, 49.41) for calculations in which core correlation was included. Only the true

spherical harmonic components of the basis functions were used throughout.

Energies were calculated using self-consistent field (SCF), single and double excitation

coupled-cluster (CCSD) and second-order Moller-Plesset perturbation theory (MP2). The

effect of triple excitations was investigated using (a) the CCSD(T) method, which includes

an estimate of the triples through fourth and partially fifth order of perturbation theory,

based on the CCSD amplitudes in the perturbation energy expressions; (b) the CCSDT

method, which explicitly includes all single, double and triple excitations; and (c) the

CCSD + T(CCSD) method is which includes only the fourth-order perturbation theory

contribution based on CCSD amplitudes.

The dipole polarizabilities are defined _6 by the energy response to an applied electric



field of strength F:

1 2 _F _E(F) = Eo- _aF - _-7-rF 4-

Electric fields of 0, 0.002, 0.004, 0.008, 0.012, 0.016 and 0.020 a.u. were applied and

the energy responses were fitted to the sixth-order polynomial in the field strength. The

SCF value of 7 obtained from the fit agrees with the SCF value obtained from finite

displacements of analytic fl values to within 0.1 a.u. Tests of the fit for the correlated

values indicate the error in 3' due to the fit is less than 0.2 a.u.

The SCF, MP2 and most of the coupled-cluster calculations were performed using

the MOLECULE-SWEDEN, 17 CADPAC, is, and TITAN 19 programs. The CCSDT calcu-

lations were performed with a program written by one of us (GES)} 1 The SCF energies

were converged to 10 -13 Eh or better and the CCSD and CCSDT energies to 10 -12.

3. Results and Discussion

The values for the linear polarizability, a and the hyperpolarizability, 7 determined

in this work are summarized in Table 1. We note first that the SCF, MP2, CCSD and

CCSD(T) results for both a and 7 are essentially identical in basis sets C+(3s3p2d3.f) and

C+(2s2pld2f). This establishes that these values are converged with respect to further

addition of diffuse s, p, d,and f functions in the one-particle basis set. It also verifies

that basis C+(2s2pld2f) is a good choice for comparison of the CCSDT and CCSD(T)

results. The CCSDT 7 value of 110.9 a.u. in this basis is in very good agreement with

that from the CCSD(T) method (111.2 a.u.). This establishes that the (T) correction is

a reliable estimate of the contribution from connected triple excitations to the hyperpo-

larizability of Ne, even though the contribution is large. Comparison of the CCSD(T)

and CCSD + T(CCSD) results with the C+(383p2d3f) basis shows that the fourth-order

correction alone is a substantial overestimate.

The effects of diffuse higher-order angular momentum functions and of core correla-

tion have also been investigated at the CCSD(T) level of theory, in order to improve upon



our previous best computed value of 111 a.U. 4 and to assess further our error estimate of

+4 a.u. Uncontraction of the one-particle basis set reduces 7 from 111.0 a.u. to 110.3 a.u.,

and core correlation gives a further reduction of 0.5 a.u. Conversely, diffuse g functions

increase 7 by 0.2 a.u. These changes are very similar to the values of -0.7, -0.5, and

0.2 a.u., respectively, obtained at the CCSD level of theory, whereas the MP2 values indi-

cate that second-order perturbation theory may underestimate the effects of uncontraction

(-0.4 a.u.) and core correlation (-0.3 a.u.). This is consistent with the results for argon, s°

where the CCSD estimate of the reduction in 7 due to core correlation is larger than the

MP2 value. The CCSD(T) results thus support our earlier conclusions 4 that the combina-

tion of further augmentation of the one-particle basis set and further improvement in the

treatment of core correlation is likely to have little effect on 7.

The importance of higher than triple excitations also requires discussion. Single and

double excitations increase 7 by 34 a.u. and triple excitations by a further 9 a.u. However,

the coupled-cluster expansion should be rapidly convergent, since all the corresponding

disconnected terms are included to infinite order at each level of CC theory. The next

most important contribution comes from connected quadruple excitations: these can be

expected to contribute substantially less than connected triple excitations. It is highly

unlikely that these terms contribute as much as 3 a.u. We have previously established 4

that the CCSD(T) energy, at least, agrees almost perfectly with full CI benchmark results

for Ne. We thus arrive at a best estimate of 110 a.u., with an uncertainty of 3 a.u. The

latter is almost entirely due to uncertainty in the estimated contribution of connected

quadruple (and higher) excitations. We can compare our result with Shelton's most recent

estimate of 108-t-2 a.u. 21 based on extrapolation of electric-field-induced second harmonic

generation values. This differs from his earlier static value of 119:i:2 due to his discovery

of a systematic error in some of the measurements. 21 Our value is also in good agreement

with other recent theoretical values. These include Maroulis and Thakkar's estimate of



1144-9a.u. based on the double-excitation coupled-cluster method augmented with a

perturbational estimate of single and triple excitations, denoted CCD+ST(CCD), 22 as

well as Chong and Langhoff's CCSD(T) value of 111.0 a.u. z3, and 108-4-5 a.u. from the

restricted active space self-consistent field calculations of Jensen and co-workers. 24

It is clearly much easier to demonstrate convergence for a than for 7. The electron

correlation contribution is smaller (around 11%) for a and the CCSD(T) and CCSDT

values agree to 3 decimal places. The diffuse function requirement is also less stringent

than for 3'. The largest remaining corrections are for core correlation and uncontraction

of the one-particle basis set which decrease a by 0.013 a.u., or 0.5%. Our best computed

value for a is 2.677 a.u. to which we conservatively assign an uncertainty of 0.015 a.u.

This is in excellent agreement with the value of 2.669 a.u. derived from dipole oscillator

strength distributions by Kumar and Meath. 25

Finally, the rather good agreement between the MP2 and CC polarizability and hy-

perpolarizability suggests that the former method may be useful even where, as is the case

for neon, the correlation contributions are large. Because it is much simpler to evaluate

dynamic polarizabilities with MP2 than with CC methods, this suggests that an efficient

route to reliable frequency-dependent results may be to correct CC static values with MP2

differences between static and dynamic values. It is certainly the case that the MP2 vMues

in themselves would be much more reliable than values obtained using SCF methods to

describe the frequency dependence. We may also note that the experimental frequencies

are far from resonance, so an error in the frequency-dependent hyperpolarizability arising

from the error in the prediction of the poles at the MP2 level of theory is not a matter for

concern.

In this work we have combined the MP2 frequency-dependent corrections 26 for

7(--2w;w,w, O) of neon with our best estimate for the static value and arrive at

112+3 a.u.(A=1319 nm), 1134-3 a.u.(A=1064 nm), 1244-4 a.u.(A---514.5 nm), to
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be comparedwith experimental secondharmonic generation values of 111.14-0.8a.u. 1,

109.94-0.8 a.u) and 122.2+0.5 a.U. 21, respectively. The theoretical results show no nega-

tive dispersion (note that the uncertainties in the theoretical numbers are not independent

and are likely to be strongly correlated with one another), and are also in good agreement

with the revised experimental values. We may also combine the MP2 frequency-dependent

correction 26 for 7K(--w;w,0,0) of neon with our best estimate of the static value and ob-

tain 113+3 a.u. for A =632.8 nm. This value is somewhat higher than the Kerr effect

measurement of 101±8 a.u. 27

4. Conclusions

We have demonstrated by comparison with full CCSDT results that the OCSD(T)

method provides an accurate description of the hyperpolarizability of neon. Since the

CCSD(T) method has the advantage of being rather inexpensive, it allows extensive inves-

tigation of the one-particle basis set requirements and the core correlation treatment for

a and 7 of neon. Our best computed CCSD(T) value for 7 of neon, including the effects

of multiple sets of diffuse s, p, d and f functions and of core correlation, is 109.8 a.u.

After incorporating corrections for diffuse g functions and a more complete treatment of

triple excitations our best estimate is ll0 a.u. with an error estimate of 3 a.u. This re-

sult is in agreement with add of the most recent theoretical values 22-24 and in line with

the static value extrapolated from experimental frequency-dependent measurements. 1'21

Together with our assignment of uncertainty, this fulfils our criteria for establishing the

accuracy of the computed value.
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Table 1

Neon dipole polarizabilities (a.u.)

Basis set Method _ 7

C a + (2s2pld2f) SCF 2.377 68.66

MP2 2.713 110.6

CCSD 2.643 102.2

CCSD(T) 2.690 110.9

CCSDT 2.690 111.2

C a + (3s3p2d3f) SCF 2.377 68.68

MP2 2.713 110.7

CCSD 2.643 102.2

CCSD + T(CCSD) 2.703 115.3

CCSD(T) 2.690 111.0

C a + (3s3p2d3f2g) SCF 2.377 68.67

MP2 2.716 110.9

CCSD 2.645 102.4

CCSD(T) 2.692 111.2

(13s8p8d4f)+(3s3p2d3f)b SCF 2.377 68.67

MP2 2.708 110.3

CCSD 2.636 101.5

CCSD(T) 2.684 110.3

(13sSpSd4 f )+( 3s3p2d3 f )c MP2 2.703 110.0

CCSD 2.628 100.8

CCSD(T) 2.677 109.8

See text for the definition of C.

b Uncontracted basis with 8 electrons correlated

Uncontracted basis with 10 electrons correlated
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ABSTRACT

We have investigated the termolecular reaction involving concerted hydrogen exchange

between three HF molecules, with particular emphasis on the effects of correlation at the

various stationary points along the reaction. Using an extended basis, we have located

the geometries of the stable hydrogen-bonded trimer, which is of Cat, symmetry, and the

transition state for hydrogen exchange, which is of Dab symmetry. The energetics of the

exchange reaction were then evaluated at the aorrelated level, using a large atomic natural

orbital basis and correlating all valence electrons. Several correlation treatments were used,

namely, configuration interaction with single and double excitations, coupled-pair func-

tional, and coupled-cluster methods. We are thus able to measure the effect of accounting

for size-extensivity. Zero-point corrections to the correlated level energetics were deter-

mined using analytic second derivative techniques at the SCF level. Our best calculations,

which include the effects of connected triple excitations in the coupled-cluster procedure,

indicate that the trimer is bound by 9-t-1 kcal/mol relative to three separated monomers, in

excellent agreement with previous estimates. The barrier to concerted hydrogen exchange

is 15 kcal/mol above the trimer, or only 4.7 kcal/mol above three separated monomers.

Thus the barrier to hydrogen exchange between HF molecules via this termolecular process

is very low'.

t Mailing address: NASA Ames Research Center, Moffett Field, CA 94035-1000



The HF trimer is known to adopt a C3h equilibrium structure 4, while the transition

state for concerted hydrogen exchange has been found to display D3h symmetry. We shall

consider the following three reactions:

3HF ---+(HF)3 [C3h] (R1)

(HF)3 ICon]---*(HF)3 [D3h] (R2)

3HF ---+ (HF)3 [D_h]. (R3)

Clearly, the energies of these three reactions are not independent, but it is convenient to

retain all three for purposes of discussion.

There have been a number of recent cMculations of the relative energies of the C3h and

D3h forms of the hydrogen fluoride trimer, that is, the energy of (R2), generally at the self-

consistent field (SCF) level. Gaw and coworkers 4 calculated this energy to be 29.5 kcal/mol

using a double-zeta plus polarization (DZP) basis. From their data, the actual energy for

reaction (R3) to proceed is 14.6 kcal/mol, uncorrected for vibrational effects. Heidrich 5

et aI. employed a variety of basis sets with geometries obtained by optimization at the

4-31G split-valence level. Their best calculation gave AE(D3h-C3h)= 37.1 kcal/mol (R2)

and an activation energy(R3) of 26.5 kcal/mol. An investigation of the relative stability of

cyclic and open forms of the trimer by Karpfen 6 and coworkers has shown that the cyclic

structure is more stable, while Liu et al. have investigated the stabilities of the trimer

and tetramer relative to isolated fragments 7. Most recently, Karpfen s has investigated

equilibrium structures and concerted hydrogen exchange in (HF)3 and several other HF

clusters, using split-valence plus polarization basis sets and the averaged coupled-pair

functional (ACPF) method. These results are compared to ours below.

In the present work we use large segmented Gaussian basis sets to locate the (HF)3

stationary points at the SCF level, and then refine the energetics by performing extensive

correlated calculations at the configuration-interaction and coupled-cluster levels, using

large atomic natural orbital basis sets. Our computational methods are described in the

next section, followed by a discussion of our results and conclusions.

Computational methods

The geometry of each stationary point was initially optimized at the SCF level using

a triple-zeta plus polarization (TZP) basis of the form [5s 3p ld]/[3s lp] contracted from

a (10s 6p 2d/5s lp) primitive set 9. The fluorine d set is a two-term fit to a Slater function

with exponent 2.2 and the hydrogen p set has a Gaussian exponent of 1.0. Vibrational

frequencies were evaluated at the SCF level using analytic second derivative methods 1°.

The TZP basis was extended to [5s 3p 2d]/[3s 2p] for use in MP2 calculations: an additional
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d set was added (a two-term fit to a Slater function with exponent 0.7), while the original

hydrogen p set was replaced by two functions with Gaussian exponents 1.4 and 0.35.

Finally, in the largest of these MP2 calculations the [5s 3p 2d]/[3s 2p] basis was augmented

with an f set (exponent 1.9) on each of the fluorine atoms. All of these initial SCF and

MP2 calculations utilized the program GRADSCF. 11

For more elaborate studies of correlation effects, an atomic natural orbital (ANO)

basis 12 of the form [4s 3p 2d lf/3s 2p ld] was used. This was contracted from a

(13s 8p 6d 4f/Ss 6p 4d) primitive set: the fluorine s and p exponents and the hydro-

gen s exponents are taken from van Duijeneveldt la and the polarization functions are

even-tempered expansions c_3k,0 _< k _< n. The ratio/3 is 2.5 in all cases, with a(d) = 0.16

and c_(f) = 0.49 on fluorine and c_(p) = 0.1 and a(d) = 0.26 on hydrogen. The ANOs

for fluorine were obtained from a single and double excitation CI (CISD) calculation on

the atomic ground state, while those for hydrogen were obtained from a calculation on the

molecule H2.12

The first set of infinite-order correlated calculations was performed using the CISD

method, including also Davidson's correction for higher excitations 14, denoted CISD+Q.

The second method used was the coupled-pair functional (CPF) method of Ahlrichs and

coworkers is which is nearly size-extensive. Finally, the coupled cluster method with single

and double excitations (CCSD) was used -- this is exactly size extensive 16 -- together with

the method denoted CCSD(T) in which a perturbational estimate of the effect of connected

triple excitations is included. 1T In the correlated calculations SCF orbitals were used, and

either 24 or 18 electrons were correlated: the former corresponds to neglecting fluorine

ls electron correlation while in the latter correlation is neglected for both fluorine ls and 2s.

No virtual orbitals were deleted in any calculations, and in the ANO basis calculations only

the spherical harmonic components of the basis functions were used. The CISD and CPF

calculations were performed using the MOLECULE-SWEDEN suite of programs is, while

the coupled-cluster calculations were performed using the program VCCSD 19.

Results and Discussion

Geometry

Our optimized SCF bond distance in HF is 0.902 ._, compared to an experimental 2°

value of 0.917 ._. In the calculated equilibrium structure for the trimer, the H-F bond

increases slightly, to 0.910 _, and the hydrogen-bonded H-F distance is 1.917 ,_. Our

calculated results are similar to those of Gaw and co-workers 4, who found r(H-F) to be

0.912 _ in the monomer and 0.923 _ in the C3h trimer. Their value for the H-F hydrogen

bond distance is 1.860 _, somewhat shorter than our value, which was determined using
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a larger basis set. Our calculated H-F bond distance in the symmetric D3h trimer is

1.136 _, in excellent agreement with the value of 1.139/_. found by Gaw et aI. As we noted

above, Karpfen s, has included correlation at the ACPF level using a split-valence plus

polarization basis set. His optimum bond lengths are 0.919 i in the monomer and 0.932/1

in the trimer. Correlation thus appears to have a rather small effect on the geometries,

although the effect is larger on the trimer than on the monomer.

Vibrations:

For HF we calculate a harmonic frequency of 4455 cm -1 with an infrared intensity

of 172 km/mol using the TZP basis set at the SCF level. The experimental value is

4138 cm -1 , while Gaw et el. calculated a value of 4440 cm -1, and Karpfen s, a value of

4182 cm-lat the ACPF level. There is a strong dependence of the calculated vibrational

frequency on the HF bond length: if the bond is elongated the computed "frequency"

decreases sharply. The calculated trimer frequencies are given in Table I.

The hydrogen-bonded systems (HF), have been extensively investigated experimen-

tally, Some of these studies have included investigations of the higher species, although

most have focused primarily on the dimer. Klemperer and coworkers 21 have shown that

the trimer of HF is non-polar, consistent with a C3h symmetry structure. Molecular beam

predissociation experiments on the trimer have also been performed 22'23, as have infrared

vibrational spectroscopy experiments in neon and argon matrices _4'25. The vibrational

predissociation spectrum of the trimer indicates that the e I band lies at 3712 cm -1. Only

one of the bands observed in matrix isolation spectra is consistent with a Cah symmetry

structure, the others are presumably due to open-chain forms that may be present in these

experiments. This band is found at 3706 cm -1 in a neon matrix, and at 3702 cm -1 in an

argon matrix.

Our C3h structure is a minimum, based on the computed force constants. Of the

twelve possible vibrational bands in this molecule there are three infrared active degenerate

e' bands and one infrared active a" band. Two of these bands, one of a _ and the other

of e_ symmetry, correlate with the separated HF molecule fragment vibrations, while the

remaining bands in the trimer correlate with translations and rotations in the separated

fragments, that is to "intermolecular" modes in the trimer. The symmetric HF stretch is

red shifted by 241 cm -1 while the degenerate HF stretch is red shifted by 175 cm -1 from

the monomer. The red shift is consistent with the increase in the HF bond distance on

going from monomer to trimer, although other factors also play a role, of course. Similar

red shifts were computed by Kaxpfen. Our calculated frequencies are somewhat larger

than those of Gaw and coworkers. The intensity of the degenerate e r stretch is predicted

to be very large both in our calculations and in the other studies.
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The remaining harmonic frequenciesareall below 1000cm-1 and are associated with

the intermolecular librational motions. The symmetric and degenerate hydrogen bond

bends are at 879 and 531 cm -1, respectively. The degenerate hydrogen bond bend is

predicted to be very intense as is the out-of-plane motion of a" symmetry.

In order to compare our computed trimer frequencies with experiment, we scale them

by a factor of 0.93, which is the ratio of the experimental harmonic frequency of HF

monomer to our computed value. Our scaled calculations thus predict a harmonic fre-

quency of 3919 cm -1 for the symmetric H-F stretch and 3980 cm -I for the degenerate

H-F stretch. The experimental 23, gas phase result is 3712 cm-ldiffering from our scaled

result by almost 270 cm -1 , and suggesting a remarkably large anharmonicity for this mode.

The assignment of the remaining bands appears to be in much better agreement with the

available experimental data. We assign the band at 590 cm -1 to the a" out of plane mode,

calculated value of 596 cm -1, while the band at 477 cm -1 is assigned as the degenerate

bend in the C3h trimer, calculated value 478 cm -1. Both of these modes are predicted to

be intense, while the lowest lying e_ band is calculated to be very weak when compared to

the other transitions.

Force constant calculations confirm that the Dab symmetry structure is a transition

state with the direction of negative curvature appropriate for the simultaneous exchange

of hydrogens among the fluorines. The magnitude of the imaginary frequency is found

to be 2224i cm -1, consistent with the dominant motion involving hydrogens. The totally

symmetric stretch is about half of its value when compared to the Cab symmetry trimer.

One of the degenerate stretches is much lower (1674 cm -1) than the value found in the

C3h symmetry trimer (4280 cm-1), and one is much higher, 1506 cm -1 versus 531 cm -1.

Energetics:

Our discussion of the energetics of the concerted hydrogen exchange is based on the

three reactions R1-R3 given in the Introduction: we repeat them here for convenience.

3HF _ (HF)3 [C3h] (R1)

(HF)3 [C3h]_(HF)3 [D3h] (R2)

3HF _ (HF)3 [D3h]. (R3)

Although ultimately the enthalpy changes are important chemically, we will first focus

only on the electronic energy differences. Our results are summarized in Table II, where

we present values for each of the three reactions given above with SCF, perturbation theory,

CI, as well as the coupled-cluster methods. Our most accurate results suggest that the

stable hydrogen bonded trimer is bound by slightly more than 14 kcal/mol relative to the



separated fragments, the barrier to reaction (R3) is predicted to be only 3.6 kcal/mol,
and the energy separation between the transition state, and the stable trimer (R2) is
18kcal/mol. This is in marked contrast to the results of most of the previous work cited
in the introduction. There is alsoa substantial variation in the results depending on the
correlation treatment employed,aswe now discuss.

At the CISD+Q level of correlation treatment, the energy difference between three
separatedHF moleculesand the transition state is found to be small: about 7 kcal/mol. A
comparisonof this reaction with the covalentexchangeof hydrogensin the H6 systemindi-
catesthat introduction of ionic characterinto the molecular systemby replacementof three
hydrogenswith three fluorine atoms reducesthe effectivebarrier from some70 kcal/mol
to about 7 kcal/mol. An approximate quantitative measureof thesechangescan also be
seenby an examination of the Mulliken chargescalculated for the trimer and the transi-
tion state. At equilibrium the charge on hydrogen is found to be 0.3e-, whereas at the

transition state this increases to 0.4e-.

As expected, the formation of the C3h trimer from three monomers is found to be

exothermic. The SCF value is found to be 12.4 kcal/mol while each of the correlated

treatments predict that the complex is slightly more than 14 kcal/mol more stable than

the reactants. The effect of correlation is found to be about 1.7 kcal/mol and roughly

independent of the number of electrons correlated or the level of treatment. Liu and

coworkers 7 have found that correlation contributed about 1 kcal/mol to this energy, some-

what less than we do. Their value was obtained with a TZP basis, while correlation effects

were included at the ACCD level 26. Karpfen obtains a somewhat larger binding energy

(15.4 kcal/mol) at the ACPF level, with a rather small basis. We note, however, that

consideration of basis set superposition error changes these observations, as we discuss in

detail below.

The effect of correlation is most dramatically seen on the energy difference between

the stable complex and the transition state. At the SCF level we find this energy differ-

ence to be over 35 kcal/mol, while the simplest correlation treatment (MP2) reduces this

energy difference to 16 kcal/mol. More elaborate single and double excitation correlation

treatments result in a difference of about 20 kcal/mol. The results are largely insensi-

tive to whether 18 or 24 electrons are correlated, so it would not be unreasonable here to

regard the fluorine 2s electrons to be part of an atomic core. On the other hand, there

are significant differences between the CISD results and those of the various size-extensive

or approximately size-extensive treatments; with such a large number of electrons corre-

lated this would be expected. Thus the simplest CI treatment, CISD, predicts an energy

separation of 23.9 kcal/mol, whereas inclusion of the +Q correction reduces this value to



21.1kcal/mol. CPF reducesthis separation by another 1.1 kcal/mol, but this appearsto
be an overestimatewhen compared to the CCSD result of 20.9 kcal/mol. Finally, inclu-
sion of the (T) correction for the effectsof connectedtriple excitations reducesthe energy
separation by almost 3 kcal/mol. This large triples contribution to the barrier height for

hydrogen exchange deserves further comment.

On initial examination, such a large effect of triples is unexpected, and might be

assumed to indicate that nondynamical correlation (near-degeneracy effects) might be im-

portant at the transition state. Recently, Lee et al. 27 have proposed the use of a diagnostic

for the effects of nondynamical correlation, based on the magnitude of the norm of the

tl amplitudes, denoted T1. This T1 diagnostic has been shown to be a good indicator of

the applicability of a single-reference-based coupled-cluster method. It was suggested 27

that a value larger than 0.02 for _ indicates nondynamical correlation effects are large

enough to cast doubt on the reliability of single-reference treatments limited to single and

double excitations. For the Dab geometry of (HF)a _ is 0.01, which would indicate that

nondynamical correlation effects should not be a problem. The large triples contribution

in fact arises from a different (and in some respects a simpler) cause. At the transition

state we have three chemical bonds which are significantly elongated relative to their equi-

librium value. We can examine the effect of triple excitations on this bond-lengthening by

computing the triples contribution for a single HF moiety, at equilibrium bond length and

at the bond length obtained for the transition state. The triples contribution to the energy

difference between these two geometries was found to be a little less than 0.7 kcal/mol.

Thus of the 2.9 kcal/mol triples correction to the barrier height, almost 2.1 kcal/mol origi-

nates in the simultaneous stretching of three HF bonds. Hence only 0.8 kcal/mol should be

ascribed to a true "many-body" effect. Nevertheless, it is clear that in a system where even

more bonds participate in the rearrangement, such as hydrogen exchange among higher

oligomers of HF, such cumulative effects would be further magnified and would certainly

require an appropriate correlation treatment.

We can now examine several sources of error in these calculations. The first is the

use of SCF geometries in the correlation treatment. In order to address this question

we have reoptimized the structure of the Dab transition state at the MP2 level using the

TZ2P basis augmented by a set of f-type functions on each of the fluorine atoms. The

bond lengths increase slightly (less than 0.01 /_.), while the energy is lowered by less than

0.8 kcal/mol relative to the MP2 result at the SCF geometry. Although we have performed

only the easier task of reoptimizing the geometry of the D3h symmetry structure with its

two degrees of freedom, we expect the effects of electron correlation to be substantially

less for the equilibrium structure than for the transition state, as discussed below. We are

therefore confident that our choice of SCF geometries will not be a source of significant
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error.

A quantitative assessment of our energetics must include an estimate of the basis set

superposition error (BSSE). Ideally, this should be done for both the stable complex and the

transition state. However, estimating the BSSE for polyatomic systems like (HF)a presents

some conceptual difficulties. We have chosen to proceed by computing a counterpoise

correction for the stable complex, using the SCF-optimized geometry and with both a

single HF molecule with two HF ghost basis sets present and two HF molecules with

a single ghost basis present as the fragments. The ANO basis was used in all BSSE

investigations. At the SCF level the BSSE is less than 0.1 kcal/mol. However, at the

CCSD level the BSSE is slightly greater than 0.5 kcal/mol for each HF moiety. We would

thus assign a BSSE of 1.5 kcal/mol for the hydrogen-bonded trimer: this is likely to be

an overestimate rather than an underestimate. Nevertheless, these results suggest that

the effects of correlation on the binding of the trimer are grossly exaggerated, since most

of the energy lowering is due to BSSE. This is consistent with the results of Karpfen,

who (assuming an SCF result similar to ours) would obtain an even greater correlation

contribution to binding: the split-valence plus polarization basis of Ref. 8 is likely to have

a larger BSSE than our ANO basis. On the other hand, the results of Liu and co-workers

are less consistent with this picture. Finally, the structure of the transition state is not

qualitatively different from that of the stable complex, so we can reasonably assign the

same (upper bound) value of 1.5 kcal/mol to the BSSE in the transition state.

The incompleteness of the one-particle space is also a source of error in these calcula-

tions. Comparison of the MP2 results, at least, in the TZ2P and ANO basis sets, suggests

that the effect of basis set extension on the binding energy of the trimer is relatively small.

Nevertheless, it is now well understood that the dominant contribution to hydrogen bond-

ing is electrostatic, and so the basis set used should not only correctly describe the bonding

in the monomer, but also provide a reasonable description of the multipole moments and

polarizability. ANO basis sets are not always capable of meeting these requirements with-

out further augmentation 28, which would make the present calculations too expensive. It

is thus possible that the effect of basis set incompleteness on the binding energy is some-

what underestimated by our calculations. However, it seems unlikely that the remaining

effects would contribute more than I kcal/mol. Since the bonding in the transition state

is similar to that in the stable complex, we expect that the basis set effect on the barrier

height would, if anything, be even smaller.

Enthalpy Changes

Our calculated AE values refer to the bottom of the potential energy well and need

to be corrected by the difference in zero point vibrational energy, AZPE. Our correction



is done at the harmonic level using the experimental value for the HF frequency, while

the trimer values are derived from our ealculated frequencies scaled by 0.93 as indicated

above. The stable trimer contains 4.5 kcal/mol more vibrational energy than the separated

reactants which reduces its stability to 9.9 kcal/mol. Correcting this value for BSSE will

further reduce the stability of the trimer: if the full counterpoise correction is applied the

result would be as low as 8 kcal/mol. In view of our discussion of basis set incompleteness,

it seems reasonable to assert that the trimer is bound by 94-1 keal/mol.

The AZPE correction between the transition state and stable trimer is -3.5 kcal/mol,

while it is 1.1 kcal/mol between the transition state and the reactants. Given these values

our calculated barrier at 0 K is 4.7 kcal/mol, and the energy separation between the stable

trimer and the transition state is 14.5 kcal/mol. Each of these values may then be further

corrected for BSSE, which would raise the computed barrier to 6.2 kcal/mol.

These results require further correction for non-zero temperatures. For reaction R2

there are no corrections required to convert AE to AH if we neglect the dependence of

the vibrational energy on temperature. For R1 and R3 the values must be corrected for

differences in the translational and rotational energies and for the difference between AE

and AH (AH = AE + AnRT with An = -2). The correction term is -6.5RT and

at 300 K this corresponds to a value of -3.9 kcal/mol for the correction, or a barrier of

2.3 kcal/mol, if the BSSE value for the barrier is used.

Conclusions

We have investigated the exchange of hydrogen atoms in a hydrogen-bonded sys-

tem and have shown that such an exchange can proceed with an activation energy of

_4 kcal/mol. In addressing this problem we have also demonstrated that the presence of

ionic character in the bonding lowers the barrier relative to that found in a purely cova-

lent system, such as H6. The effects of electron correlation on the energetics once again

demonstrate the magnitude of size-extensivity errors when many electrons are correlated.

In addition, in (HF)3 the effects of triple excitations significantly alter the barrier height

from that predicted at the CCSD level, and we can expect this effect to become more im-

portant with increasing size of the system. Finally, since the barrier to concerted hydrogen

exchange is small, we may anticipate a significant contribution from tunneling to the rate

of the exchange reaction.
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Table I

Calculated harmonic vibrational spectra

Mode _ (cm -1 ) I(km/mol) Description

C3h Structure:

a _ 4214 0

a I 879 0

a I 186 0

a II 662 507

eI 4280 571

et 531 382

e_ 157 17

e/' 475 0

symmetric HF stretch

symmetric bend

symmetric stretch -libration

out of plane torsion

degenerate HF stretch

degenerate angular def.

degenerate stretch - libration

degenerate out of plane torsion

D3h Structure:

a_ 2212 0

a_ 788 0

aS 2194i -

a_' 1449 466

e' 1674 21

d 1506 4154

# 604 0.3

e" 1135 0

symmetric breathing stretch

symmetric HF str. and bend

negative curvature stretch

out of plane torsion

degenerate stretch pIus bend

degenerate stretch + bend

degenerate bend + stretch

degenerate out of plane torsion
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Table II

Comparison of relative energies _

Calculation: AE(R1) AE(R2) AE(R3)

SCF, CI, and CPF Results:

ANO SCF -12.4

ANO CISD 18 el -14.2

ANO CISD+Q 18 el -14.1

ANO CPF 18 el -14.1

ANO CISD 24 el -14.3

ANO CISD+Q 24 el -14.2

ANO CPF 24 el -14.1

35.8

23.8

21.3

20.8

23.9

21.1

20.0

23.4

9.6

7.2

6.7

9.6

6.9

5.9

SCF, MP2, and CC Results:

TZ2P/SCF

TZ2P/MP2

ANO SCF

ANO/MP2

ANO CCSD 24 el

ANO CCSD(T) 24 el

35.1

16.7

35.8

16.1

20.9

18.0

23.4

1.8

7.0

3.6

a) Relative energies are given in kcal/mol.
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